Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Persistent Homology for Learning Densities with Bounded Support
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.ORCID-id: 0000-0003-1114-6040
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.ORCID-id: 0000-0002-5750-9655
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.ORCID-id: 0000-0003-2965-2953
2012 (engelsk)Inngår i: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012 / [ed] P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou and K.Q. Weinberger, Curran Associates, Inc., 2012, s. 1817-1825Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We present a novel method for learning densities with bounded support which enables us to incorporate 'hard' topological constraints. In particular, we show how emerging techniques from computational algebraic topology and the notion of persistent homology can be combined with kernel-based methods from machine learning for the purpose of density estimation. The proposed formalism facilitates learning of models with bounded support in a principled way, and - by incorporating persistent homology techniques in our approach - we are able to encode algebraic-topological constraints which are not addressed in current state of the art probabilistic models. We study the behaviour of our method on two synthetic examples for various sample sizes and exemplify the benefits of the proposed approach on a real-world dataset by learning a motion model for a race car. We show how to learn a model which respects the underlying topological structure of the racetrack, constraining the trajectories of the car.

sted, utgiver, år, opplag, sider
Curran Associates, Inc., 2012. s. 1817-1825
Serie
Advances in Neural Information Processing Systems, ISSN 1049-5258 ; 3
Emneord [en]
persistent homology, density estimation, topological constraints
HSV kategori
Forskningsprogram
SRA - Informations- och kommunikationsteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-104754Scopus ID: 2-s2.0-84877777095ISBN: 978-162748003-1 (tryckt)OAI: oai:DiVA.org:kth-104754DiVA, id: diva2:579082
Konferanse
26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012; Lake Tahoe, NV; United States; 3 December 2012 through 6 December 2012
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, 270436EU, European Research Council, 279933Swedish Foundation for Strategic Research
Merknad

QC 20120115

Tilgjengelig fra: 2012-12-19 Laget: 2012-11-12 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

ScopusConference websiteNIPS2012 Online Papers

Personposter BETA

Pokorny, Florian T.Kjellström, HedvigKragic, Danica

Søk i DiVA

Av forfatter/redaktør
Pokorny, Florian T.Ek, Carl HenrikKjellström, HedvigKragic, Danica
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 129 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf