Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automated NREM sleep staging using the Electro-oculogram: A pilot study
KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinska sensorer, signaler och system.ORCID-id: 0000-0001-7807-8682
2012 (Engelska)Ingår i: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, IEEE , 2012, s. 2255-2258Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Automatic sleep staging from convenient and unobtrusive sensors has received considerable attention lately because this can enable a large range of potential applications in the clinical and consumer fields. In this paper the focus is on achieving non-REM (NREM) sleep staging from ocular electrodes. From these signals, specific patterns related to sleep such as slow eye movements, K-complexes, eye blinks, and spectral features are estimated. Although such patterns are characteristic of the Electroencephalogram, they can also be visible to a lesser extent on signals from ocular electrodes. Automatic sleep staging was implemented using two approaches: i) based on a state-machine and ii) using a neural network. The first one relied on the recommendations of the American Academy of Sleep Medicine, and the second one used a multilayer perceptron which was trained on manually sleep-staged data. Results were obtained on the data of five volunteers who participated in a nap experiment. Manual sleep staging of this data, performed by an expert, was used as reference. Five stages were considered, namely wake with eyes open, wake with eyes closed, and sleep stages N1, N2, and N3. The results were characterized in terms of confusion matrices from which the Cohen's κ coefficients were estimated. The values of κ for both the state-machine and neural-network based automatic sleep staging approaches were 0.79 and 0.59 respectively. Thus, the state-machine based approach shows a very good agreement with manual staging of sleep-data.

Ort, förlag, år, upplaga, sidor
IEEE , 2012. s. 2255-2258
Serie
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, ISSN 1557-170X
Nyckelord [en]
Confusion matrices, Electro-oculogram, Eye blink, Multi layer perceptron, Pilot studies, Potential applications, Sleep stage, Sleep staging, Spectral feature, State-machine, Electrodes, Eye movements, Wakes, Sleep research
Nationell ämneskategori
Annan medicin och hälsovetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-116560ISI: 000313296502119PubMedID: 23366372Scopus ID: 2-s2.0-84870821800ISBN: 978-142444119-8 (tryckt)OAI: oai:DiVA.org:kth-116560DiVA, id: diva2:589994
Konferens
34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012, 28 August 2012 through 1 September 2012, San Diego, CA
Anmärkning

QC 20130121

Tillgänglig från: 2013-01-21 Skapad: 2013-01-21 Senast uppdaterad: 2014-01-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

PubMedScopusIEEEXplore

Personposter BETA

Abtahi, Farhad

Sök vidare i DiVA

Av författaren/redaktören
Abtahi, Farhad
Av organisationen
Medicinska sensorer, signaler och system
Annan medicin och hälsovetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

pubmed
isbn
urn-nbn

Altmetricpoäng

pubmed
isbn
urn-nbn
Totalt: 219 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf