Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Anti-vibration Engineering in Internal Turning Using a Carbon Nanocomposite Damping Coating Produced by PECVD Process
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion, Maskin- och processteknologi.
KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.ORCID-id: 0000-0001-8591-1003
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion, Maskin- och processteknologi.
2014 (Engelska)Ingår i: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 23, nr 2, s. 506-517Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Machining dynamic stability has been enhanced through a damping coating based on a novel carbon-based nanocomposite material. The coating was synthesized using a plasma enhanced chemical vapor deposition method, and deposited on to the round-shank boring bar used for internal turning and tested during machining. Comparisons between an uncoated and a coated boring bar were carried out at 0.25 mm and 0.5 mm depth of cut using a five times length to diameter ratio overhang, which are typical conditions known to generate detrimental mechanical vibrations. From sound pressure measurement it was found that the measured absolute sound level during process could be reduced by about 90% when using the tool coated with damping layer. Surface roughness measurements of the processed workpiece showed decreased Ra values from approximately 3-6 mu m to less than 2 mu m (and in 50% of the cases < 1 mu m) when comparing an uncoated standard tool with its coated counterpart. Moreover, it was found that the addition of an anti-vibration coating did not adversely affect other tool properties, such as rigidity and modularity.

Ort, förlag, år, upplaga, sidor
Springer-Verlag New York, 2014. Vol. 23, nr 2, s. 506-517
Nyckelord [en]
chatter, machining, vibration damping, coating, PECVD, HIPIMS, metal matrix composite, carbon nanocomposite
Nationell ämneskategori
Teknisk mekanik Produktionsteknik, arbetsvetenskap och ergonomi Kompositmaterial och -teknik Strömningsmekanik och akustik Nanoteknik Fusion, plasma och rymdfysik
Forskningsämne
Järnvägsgruppen - Ljud och vibrationer; SRA - Produktion
Identifikatorer
URN: urn:nbn:se:kth:diva-122425DOI: 10.1007/s11665-013-0781-yISI: 000330594800019Scopus ID: 2-s2.0-84893576587OAI: oai:DiVA.org:kth-122425DiVA, id: diva2:622303
Projekt
Eurostars Nanocomfort E!4329, Vinnova
Forskningsfinansiär
Vinnova, E!4329XPRES - Initiative for excellence in production research
Anmärkning

QC 20140228. Updated from submitted to published.

Tillgänglig från: 2013-05-21 Skapad: 2013-05-21 Senast uppdaterad: 2017-12-06Bibliografiskt granskad
Ingår i avhandling
1. Joint Interface Effects on Machining System Vibration
Öppna denna publikation i ny flik eller fönster >>Joint Interface Effects on Machining System Vibration
2013 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Vibration problems are still the major constraint in modern machining processes that seek higher material removal rate, shorter process time, longer tool life and better product quality. Depending on the process, the weaker structure element can be the tool/tool holder, workpiece/fixture or both. When the tool/tool holder is the main source of vibration, the stability limit is determined in most cases by the ratio of length-to-diameter. Regenerative chatter is the most significant dynamic phenomenon generated through the interaction between machine tool and machining process. As a rule of thumb, the ratio between the tool’s overhang length and the tool’s diameter shouldn’t exceed 4 to maintain a stable machining process while using a conventional machining tool. While a longer tool overhang is needed for specific machining operations, vibration damping solutions are required to ensure a stable machining process. Vibration damping solutions include both active and passive damping solutions. In the passive damping solutions, damping medium such as viscoelastic material is used to transform the vibration strain energy into heat and thereby reduce vibration amplitude. For a typical cantilever tool, the highest oscillation displacement is near the anti-node regions of a vibration mode and the highest oscillation strain energy is concentrated at the node of a vibration mode. Viscoelastic materials have been successfully applied in these regions to exhibit their damping property. The node region of the 1st bending mode is at the joint interfaces where the cantilever tools are clamped. In this thesis, the general method that can be used to measure and characterize the joint interface stiffness and damping properties is developed and improved, joint interfaces’ importance at optimizing the dynamic stiffness of the joint interface is studied, and a novel advancing material that is designed to possess both high young’s modulus and high damping property is introduced. In the joint interface characterization model, a method that can measure the joint interface’s stiffness and damping over the full frequency range with only the assembled structure is presented. With the influence of a joint interface’s normal pressure on its stiffness and damping, an optimized joint interface normal pressure is selected for delivering a stable machining process against chatter with a boring bar setting at 6.5 times overhang length to diameter ratio in an internal turning process. The novel advancing material utilizes the carbon nano particles mixed in a metal matrix, and it can deliver both high damping property and high elastic stiffness to the mechanical structure.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2013. s. ix, 48
Serie
TRITA-IIP, ISSN 1650-1888 ; 13:05
Nyckelord
Joint Interface, Vibration, Damping, Chatter, Machining, Carbon NanoComposite, PECVD, HiPIMS
Nationell ämneskategori
Teknik och teknologier
Forskningsämne
SRA - Produktion; Järnvägsgruppen - Ljud och vibrationer
Identifikatorer
urn:nbn:se:kth:diva-122392 (URN)978-91-7501-778-5 (ISBN)
Presentation
2013-05-24, Sal M311, Brinellvägen 68, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Projekt
PoPJIM, HydroMod, XPRES, NanoComfort
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, G62241EU, FP7, Sjunde ramprogrammet, G62240XPRES - Initiative for excellence in production researchEU, Europeiska forskningsrådet, E4329
Anmärkning

QC 20130521

Tillgänglig från: 2013-05-21 Skapad: 2013-05-20 Senast uppdaterad: 2015-11-11Bibliografiskt granskad
2. High dynamic stiffness nano-structured composites for vibration control: A Study of applications in joint interfaces and machining systems
Öppna denna publikation i ny flik eller fönster >>High dynamic stiffness nano-structured composites for vibration control: A Study of applications in joint interfaces and machining systems
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Vibration control requires high dynamic stiffness in mechanical structures for a reliable performance under extreme conditions. Dynamic stiffness composes the parameters of stiffness (K) and damping (η) that are usually in a trade-off relationship. This thesis study aims to break the trade-off relationship.

After identifying the underlying mechanism of damping in composite materials and joint interfaces, this thesis studies the deposition technique and physical characteristics of nano-structured HDS (high dynamic stiffness) composite thick-layer coatings. The HDS composite were created by enlarging the internal grain boundary surface area through reduced grain size in nano scale (≤ 40 nm). The deposition process utilizes a PECVD (Plasma Enhanced Chemical Vapour Deposition) method combined with the HiPIMS (High Power Impulse Magnetron Sputtering) technology. The HDS composite exhibited significantly higher surface hardness and higher elastic modulus compared to Poly(methyl methacrylate) (PMMA), yet similar damping property. The HDS composites successfully realized vibration control of cutting tools while applied in their clamping interfaces.

Compression preload at essential joint interfaces was found to play a major role in stability of cutting processes and a method was provided for characterizing joint interface properties directly on assembled structures. The detailed analysis of a build-up structure showed that the vibrational mode energy is shifted by varying the joint interface’s compression preload. In a build-up structure, the location shift of vibration mode’s strain energy affects the dynamic responses together with the stiffness and damping properties of joint interfaces.

The thesis demonstrates that it is possible to achieve high stiffness and high damping simultaneously in materials and structures. Analysis of the vibrational strain energy distribution was found essential for the success of vibration control.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2015. s. ix, 71
Serie
TRITA-IIP, ISSN 1650-1888
Nyckelord
Vibration control, High dynamic stiffness, Metal matrix composite, Nano structures, Plasma enhanced chemical vapour deposition (PECVD), High power impulse magnetron sputtering (HiPIMS), Adiabatic, Machining, Regenerative tool chatter
Nationell ämneskategori
Nanoteknik Produktionsteknik, arbetsvetenskap och ergonomi Kompositmaterial och -teknik Fusion, plasma och rymdfysik Kemi Bearbetnings-, yt- och fogningsteknik Teknisk mekanik
Forskningsämne
Industriell produktion
Identifikatorer
urn:nbn:se:kth:diva-176869 (URN)978-91-7595-740-1 (ISBN)
Disputation
2015-12-01, M311, Brinellvägen 68, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, 608800EU, FP7, Sjunde ramprogrammet, 260048VINNOVA, E!4329VINNOVA, HydroMod
Tillgänglig från: 2015-11-11 Skapad: 2015-11-10 Senast uppdaterad: 2015-11-11Bibliografiskt granskad

Open Access i DiVA

fulltext(1196 kB)2463 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1196 kBChecksumma SHA-512
b74fe71006e2e97844eeb86ee43bb360f6547969187381bbc45c3189c6bfc38a8e3ca2b210a1ec46fffec890c8279c750b2765edf5b7520f11f0b6d208cbc90a
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopusPublished version

Personposter BETA

Lundin, Daniel

Sök vidare i DiVA

Av författaren/redaktören
Fu, QilinLundin, DanielNicolescu, Cornel Mihai
Av organisationen
Maskin- och processteknologiRymd- och plasmafysik
I samma tidskrift
Journal of materials engineering and performance (Print)
Teknisk mekanikProduktionsteknik, arbetsvetenskap och ergonomiKompositmaterial och -teknikStrömningsmekanik och akustikNanoteknikFusion, plasma och rymdfysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 2463 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 597 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf