kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Assessment of biomethane production from maritime common reed
KTH, School of Industrial Engineering and Management (ITM), Industrial Ecology.
KTH, School of Industrial Engineering and Management (ITM), Industrial Ecology.
KTH, School of Industrial Engineering and Management (ITM), Industrial Ecology.
Show others and affiliations
2013 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 53, p. 186-194Article in journal (Refereed) Published
Abstract [en]

Several ongoing projects are harvesting maritime biomass from the Baltic Sea for eutrophication mitigation and utilisation of the recovered biomass. Some of this biomass comprises common reed (Phragmites australis), one of the most widespread vascular plants on Earth. Reed utilisation from eutrophied coastal areas needs to be evaluated. Therefore, a system analysis was performed of reed harvesting for biofuel and biofertiliser production. The specific objectives of the analysis were to: investigate the methane yield associated with anaerobic co-digestion of reed; make a primary energy assessment of the system; quantify Greenhouse Gas (GHG) savings when a fossil reference system is replaced; and estimate the nutrient recycling potential of the system. The results from energy and GHG calculations are highly dependent on conditions such as system boundaries, system design, allocation methods and selected indicators. Therefore a pilot project taking place in Kalmar County, Sweden, was used as a case study system. Laboratory experiments using continuously stirred tank reactor digesters indicated an increased methane yield of about 220 m(3) CH4/t volatile solids from co-digestion of reed. The energy balance for the case study system was positive, with energy requirements amounting to about 40% of the energy content in the biomethane produced and with the non-renewable energy input comprising about 50% of the total energy requirements of the system. The net energy value proved to be equivalent to about 40 L of petrol/t reed wet weight. The potential to save GHG emissions compared with a fossil reference system was considerable (about 80%). Furthermore an estimated 60% of the nitrogen and almost all the phosphorus in the biomass could be re-circulated to arable land as biofertiliser. Considering the combined benefits from all factors investigated in this study, harvesting of common reed from coastal zones has the potential to be beneficial, assuming an appropriate system design, and is worthy of further investigations regarding other sustainability aspects.

Place, publisher, year, edition, pages
Elsevier, 2013. Vol. 53, p. 186-194
Keywords [en]
Phragmites australis, Anaerobic digestion, Energy balance, Baltic Sea, System analysis, Nutrient recycling
National Category
Environmental Sciences
Identifiers
URN: urn:nbn:se:kth:diva-125543DOI: 10.1016/j.jclepro.2013.03.030ISI: 000321409100020Scopus ID: 2-s2.0-84878913954OAI: oai:DiVA.org:kth-125543DiVA, id: diva2:640112
Funder
Swedish Research Council Formas, 229-2009-468
Note

QC 20130812

Available from: 2013-08-12 Created: 2013-08-09 Last updated: 2024-03-18Bibliographically approved
In thesis
1. Sustainability Aspects of Bioenergy and Nutrient Recovery from Marine Biomass: Baltic Sea case studies
Open this publication in new window or tab >>Sustainability Aspects of Bioenergy and Nutrient Recovery from Marine Biomass: Baltic Sea case studies
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Coastal areas around the world are experiencing environmental problems such as climate change and eutrophication. These, in turn, lead to emerging challenges with excessive amounts of biomass that impact coastal communities. Developing utilisation strategies for marine biomass is therefore highly relevant and forms part of the blue growth research field. In response to environmental concerns, as a waste management strategy and as part of blue growth research initiatives, several Baltic Sea coastal projects have been initiated in recent years to study utilisation of maritime biomass. However, the sustainability of these utilisation strategies has not been critically appraised. Therefore, the work presented in this thesis explored some key sustainability aspects of two Baltic Sea case studies utilising common reed (Kalmar, Sweden) and mass-occurring filamentous macroalgae (Trelleborg, Sweden) for biogas and biofertiliser recovery. Energy analyses suggested that both case studies could provide a positive energy balance and have the potential to achieve nutrient recovery. Moreover, a contingent valuation study in Trelleborg demonstrated considerable welfare benefits of biomass utilisation. These findings indicate that marine biomass utilisation strategies highlight potential to contribute to environmental and welfare benefits of these coastal communities.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. p. xii, 57
Series
TRITA-IM, ISSN 1402-7615 ; 2014:03
National Category
Environmental Sciences
Research subject
Industrial Ecology
Identifiers
urn:nbn:se:kth:diva-156377 (URN)978-91-7595-365-6 (ISBN)
Public defence
2014-12-18, F3, Lindstedtsvägen 26, KTH, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Formas, Grant number 229-2009-468
Note

QC 20141126

Available from: 2014-11-26 Created: 2014-11-26 Last updated: 2022-06-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Risén, EmmaMalmström, Maria E.Gröndahl, Fredrik

Search in DiVA

By author/editor
Risén, EmmaTatarchenko, OlenaBlidberg, EvaMalmström, Maria E.Gröndahl, Fredrik
By organisation
Industrial Ecology
In the same journal
Journal of Cleaner Production
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 239 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf