Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cooling performance of nanofluids in a small diameter tube
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Tillämpad termodynamik och kylteknik.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM.ORCID-id: 0000-0001-5380-975X
KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM.
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Tillämpad termodynamik och kylteknik.
Vise andre og tillknytning
2013 (engelsk)Inngår i: Experimental Thermal and Fluid Science, ISSN 0894-1777, E-ISSN 1879-2286, Vol. 49, s. 114-122Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This article reports convective single-phase heat transfer performance in laminar flow for some selected nanofluids (NFs) in an open small diameter test section. A 0.50 mm inner diameter, 30 cm long stainless steel test section was used for screening single phase laminar convective heat transfer with water and five different water based NFs. Tested NFs were; Al2O3 (two types), TiO2 (two types) and CeO2 (one type), all 9 wt.% particle concentration. The effective thermal conductivity of the NFs were measured with Transient Plane Source (TPS) method and viscosity were measured with a rotating coaxial cylindrical viscometer. The obtained experimental results for thermal conductivity were in good agreement with the predicted values from Maxwell equation. The local Shah correlation, which is conventionally used for predicting convective heat transfer in laminar flow in Newtonian fluids with constant heat flux boundary condition, was shown to be valid for NFs. Moreover, the Darcy correlation was used to predict the friction factor for the NFs as well as for water. Enhancement in heat transfer for NFs was observed, when compared at equal Reynolds number, as a result of higher velocity or mass flow rate of the NFs at any given Reynolds number due to higher viscosity for NFs. However, when compared at equal pumping power no or only minor enhancement was observed.

sted, utgiver, år, opplag, sider
Elsevier, 2013. Vol. 49, s. 114-122
Emneord [en]
Nanofluids, Thermal conductivity, Viscosity, Heat transfer coefficient, Tube, Cooling
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-125539DOI: 10.1016/j.expthermflusci.2013.04.009ISI: 000321404800012Scopus ID: 2-s2.0-84878896950OAI: oai:DiVA.org:kth-125539DiVA, id: diva2:640249
Merknad

QC 20130813

Tilgjengelig fra: 2013-08-13 Laget: 2013-08-09 Sist oppdatert: 2018-02-27bibliografisk kontrollert
Inngår i avhandling
1. Single Phase Convective Heat Transfer with Nanofluids: An Experimental Approach
Åpne denne publikasjonen i ny fane eller vindu >>Single Phase Convective Heat Transfer with Nanofluids: An Experimental Approach
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Nanofluids (NFs) are engineered colloids of nanoparticles (NPs) dispersed homogenously within base fluids (BFs). Due to the presence of NPs, the thermophysical and transport properties of BFs are subject to change. Existing technologies for cooling electronics seem to be insufficient and NFs, as reported in several studies, might offer a better alternative to liquid cooling. The main purpose of this study, by choosing a critical approach to existing knowledge in the literature, is to investigate experimentally the potential for replacing BFs with NFs in single–phase flow. Several NFs (mainly water based metal oxide NFs) were synthesised, and different experiments (including thermal conductivity, viscosity, heat transfer coefficient, and shelf stability) were performed.

The thermal conductivity and the viscosity of several NFs were measured at both near room and elevated temperatures; the results are reported and compared with some correlations. It is shown that the Maxwell model for thermal conductivity and the modified Krieger–Dougherty model for viscosity can be used to predict these properties of NFs within ±10% error, even at elevated temperatures.

A screening setup, including a test section with d = 0.5 mm and L = 30 cm, was designed for measuring the heat transfer performance of NFs in laminar flow. In addition a closed–loop setup with a 3.7 mm inner diameter and 1.5 m length test section was also designed to measure the heat transfer coefficients in both laminar and turbulent flow with higher accuracy. Based on the results, classical correlations for predicting Nusselt number and friction factor in a straight tube are still valid for NFs within ± (10 – 20)% error provided that the correct thermophysical properties are used for NFs.

Different methods of comparing cooling performance of NFs to BFs are then investigated. Comparison at equal Reynolds number, the most popular method in the literature, is demonstrated both experimentally and analytically to be misleading. However, if the most correct criterion (at equal pumping power) is chosen, a small advantage for some NFs over their BFs should be expected only under laminar flow. The investigation concludes with the proposition of a unique method and apparatus to estimate the shelf stability of NFs.

Abstract [sv]

Nanofluider (NF) kallas suspensioner av nanopartiklar (NP) i en vätska (base fluid, BF). Tillsatsen av nanopartiklar leder till förändring av vätskans termodynamiska- och transport-egenskaper vilket eventuellt kan utnyttjas för att anpassa egenskaperna efter speciella behov.

Befintliga teknologier för kylning av elektronik tenderar att vara otillräckliga och nanofluider kan, som föreslagits i olika studier, ge en möjlighet att åstadkomma effektivare vätskekylning än dagens kylmedier. Huvudsyftet med denna studie har varit att kritiskt granska tidigare publicerad information om nanofluider samt att genom nya tester av många olika nanofluider undersöka potentialen för att ersätta vanligt förekommande kylvätskor med nanofluider i tillämpningar utan fasändring. Ett stort antal nanofluider, huvudsakligen vattenbaserade metall-oxid nanofluider, karakteriserades genom bestämning av värmeledningstal, viskositet, värmeövergångstal vid rörströmning och möjlig lagringstid. De experimentella resultaten analyseras i detalj och jämförs med korrelationer från litteraturen.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2015. s. x, 116
Serie
TRITA-REFR, ISSN 1102-0245 ; 15:01
Emneord
nanofluid, convective heat transfer, thermal conductivity, viscosity, heat transfer coefficient, performance, pumping power, Reynolds number, shelf stability
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-159199 (URN)987-91-7595-414-1 (ISBN)
Disputas
2015-02-05, Sal F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad

QC 20150126

Tilgjengelig fra: 2015-01-26 Laget: 2015-01-23 Sist oppdatert: 2015-01-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Saleemi, MohsinToprak, Muhammet S.Palm, Björn

Søk i DiVA

Av forfatter/redaktør
Bitaraf Haghighi, EhsanSaleemi, MohsinNikkam, NaderAnwar, ZahidLumbreras, ItziarBehi, MohammadrezaMirmohammadi, Seyed A.Khodabandeh, RahmatollahToprak, Muhammet S.Muhammed, MamounPalm, Björn
Av organisasjonen
I samme tidsskrift
Experimental Thermal and Fluid Science

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 935 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf