Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Combined membrane filtration and enzymatic treatment for recovery of high molecular mass hemicelluloses from chemithermomechanical pulp process water
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
2013 (engelsk)Inngår i: Chemical Engineering Journal, ISSN 1385-8947, E-ISSN 1873-3212, Vol. 225, s. 292-299Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Hemicelluloses with high molecular mass are needed for the manufacture of value added products such as food packaging barrier films. In this work such molecules were recovered from chemithermomechanical pulp (CTMP) process water using an innovative three-stage process comprising membrane separation and enzymatic treatment with laccase. Microfiltration followed by ultrafiltration was found to be a suitable combination in the first stage, providing a concentrated and purified hemicellulose fraction suitable for enzymatic treatment. In both membrane processes a high average flux (260 and 115 l/m(2) h) and a low fouling tendency were observed. A marked increase in the average molecular mass of hemicelluloses with bound lignin moieties was achieved by laccase treatment in the second stage. The enzymatically crosslinked hemicelluloses were finally recovered in the third stage using ultrafiltration. In the final high molecular mass solution the hemicellulose concentration was 54 g/l, the contribution of hemicelluloses to the total solids content 43%, and the viscosity of the solution 27 mPa s. The results demonstrate that a hemicellulose fraction of high quality can be produced from CTMP process water, and that this could constitute a suitable feedstock for the production of, for example, barrier films for renewable packaging.

sted, utgiver, år, opplag, sider
Elsevier, 2013. Vol. 225, s. 292-299
Emneord [en]
Chemithermomechanical pulp, Hemicellulose, Galactoglucomannan, Membrane filtration, Laccase
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-125753DOI: 10.1016/j.cej.2013.03.089ISI: 000321313800034Scopus ID: 2-s2.0-84876733717OAI: oai:DiVA.org:kth-125753DiVA, id: diva2:640460
Forskningsfinansiär
Swedish Research CouncilVinnova
Merknad

QC 20130813

Tilgjengelig fra: 2013-08-13 Laget: 2013-08-13 Sist oppdatert: 2017-12-06bibliografisk kontrollert
Inngår i avhandling
1. A biomimicking approach for hemicellulose processing
Åpne denne publikasjonen i ny fane eller vindu >>A biomimicking approach for hemicellulose processing
2014 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Lignocellulose can become the best opportunity for the society to reduce its dependency on the harmful petroleum based products as well as to produce clean energy. In each part of the production cycle, biomass based products have a better environmental profiles than their petroleum based counterparts. Woody biomass has a vast availability, but it suffers from recalcitrance that is mostly caused by lignin that is functioning as a matrix, surrounding and binding the carbohydrates that are currently the most valuable of the wood components.

Lignin-carbohydrate (LC) bonds are believed to be a key element in this recalcitrance and research has shown that these types of bonds are common in wood. These bonds are important in an economical point of view as well, as e.g. residual lignin structures in pulp (lignins bonded to the cellulose and hemicelluloses) require expensive bleaching sequences for their removal.

The LC-structures can also be exploited technically as we now have demonstrated. We developed a method that utilizes phenolic end groups that are bonded to different hemicelluloses for cross-linking. The enzyme laccase was used for the cross-linking to create a cost-efficient processing scheme to both isolate and increase the molecular weight of the hemicelluloses. Membrane filtration was used as the key separation technique, which enables the establishment of industrial scale production. The final product had improved mechanical and thermal properties and could be used e.g. as barrier film component in renewable packaging. Nanocomposite formation with nanofibrillated cellulose was also studied. This improved the film properties further. The complexes are also possible to use as model compounds for lignin-carbohydrate complexes in wood.

This technique can also be seen to mimick the lignification and lignin-carbohydrate network formation phenomena in plants enabling the formation of entire networks of wood components. Our results suggests that the side chains of hemicellulose might play an important role in network formation and that hemicellulose molecules can carry more than one lignin phenolic end group to fulfill this capability.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2014. s. 50
Serie
TRITA-CHE-Report, ISSN 1654-1081 ; 2014:30
Emneord
Mechanical pulping, Hemicellulose, Cross-linking, Lignin-carbohydrate-complex
HSV kategori
Forskningsprogram
Fiber- och polymervetenskap
Identifikatorer
urn:nbn:se:kth:diva-148586 (URN)978-91-7595-221-5 (ISBN)
Disputas
2014-09-05, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Swedish Research Council, 621-2008-4177Knut and Alice Wallenberg FoundationVinnova, 2011-03387
Merknad

QC 20140825

Tilgjengelig fra: 2014-08-25 Laget: 2014-08-08 Sist oppdatert: 2014-08-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Oinonen, Petri
Av organisasjonen
I samme tidsskrift
Chemical Engineering Journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 225 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf