Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dynamic data-driven local traffic state estimation and prediction
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Transportvetenskap, Trafik och logistik.
2013 (Engelska)Ingår i: Transportation Research Part C: Emerging Technologies, ISSN 0968-090X, E-ISSN 1879-2359, Vol. 34, s. 89-107Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Traffic state prediction is a key problem with considerable implications in modern traffic management. Traffic flow theory has provided significant resources, including models based on traffic flow fundamentals that reflect the underlying phenomena, as well as promote their understanding. They also provide the basis for many traffic simulation models. Speed-density relationships, for example, are routinely used in mesoscopic models. In this paper, an approach for local traffic state estimation and prediction is presented, which exploits available (traffic and other) information and uses data-driven computational approaches. An advantage of the method is its flexibility in incorporating additional explanatory variables. It is also believed that the method is more appropriate for use in the context of mesoscopic traffic simulation models, in place of the traditional speed-density relationships. While these general methods and tools are pre-existing, their application into the specific problem and their integration into the proposed framework for the prediction of traffic state is new. The methodology is illustrated using two freeway data sets from Irvine, CA, and Tel Aviv, Israel. As the proposed models are shown to outperform current state-of-the-art models, they could be valuable when integrated into existing traffic estimation and prediction models.

Ort, förlag, år, upplaga, sidor
2013. Vol. 34, s. 89-107
Nyckelord [en]
Classification, Clustering, Data-driven approaches, Local speed prediction, Locally weighted regression, Markov process, Neural network, Traffic state prediction
Nationell ämneskategori
Transportteknik och logistik
Identifikatorer
URN: urn:nbn:se:kth:diva-126075DOI: 10.1016/j.trc.2013.05.012ISI: 000322432200006Scopus ID: 2-s2.0-84880355786OAI: oai:DiVA.org:kth-126075DiVA, id: diva2:641607
Anmärkning

QC 20130819

Tillgänglig från: 2013-08-19 Skapad: 2013-08-19 Senast uppdaterad: 2017-12-06Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Koutsopoulos, Harilaos N.
Av organisationen
Trafik och logistik
I samma tidskrift
Transportation Research Part C: Emerging Technologies
Transportteknik och logistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 301 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf