CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt187",{id:"formSmash:upper:j_idt187",widgetVar:"widget_formSmash_upper_j_idt187",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt190_j_idt198",{id:"formSmash:upper:j_idt190:j_idt198",widgetVar:"widget_formSmash_upper_j_idt190_j_idt198",target:"formSmash:upper:j_idt190:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Analysis of heterogeneous multiscale methods for long time wave propagation problemsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2014 (English)In: Multiscale Modeling & simulation, ISSN 1540-3459, E-ISSN 1540-3467, Vol. 12, no 3, p. 1135-1166Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2014. Vol. 12, no 3, p. 1135-1166
##### Keywords [en]

multiscale wave equation, long time wave equation, homogenization
##### National Category

Computational Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-129245DOI: 10.1137/140957573ISI: 000343130500008Scopus ID: 2-s2.0-84907940927OAI: oai:DiVA.org:kth-129245DiVA, id: diva2:651109
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt726",{id:"formSmash:j_idt726",widgetVar:"widget_formSmash_j_idt726",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt736",{id:"formSmash:j_idt736",widgetVar:"widget_formSmash_j_idt736",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt754",{id:"formSmash:j_idt754",widgetVar:"widget_formSmash_j_idt754",multiple:true});
##### Funder

Swedish e‐Science Research Center, 649031
##### Note

##### In thesis

In this paper, we analyze a multiscale method developed under the heterogeneous multiscale method (HMM) framework for numerical approximation of multiscale wave propagation problems in periodic media. In particular, we are interested in the long time O(epsilon(-2)) wave propagation, where e represents the size of the microscopic variations in the media. In large time scales, the solutions of multiscale wave equations exhibit O(1) dispersive effects which are not observed in short time scales. A typical HMM has two main components: a macromodel and a micromodel. The macromodel is incomplete and lacks a set of local data. In the setting of multiscale PDEs, one has to solve for the full oscillatory problem over local microscopic domains of size eta = O(epsilon) to upscale the parameter values which are missing in the macroscopic model. In this paper, we prove that if the microproblems are consistent with the macroscopic solutions, the HMM approximates the unknown parameter values in the macromodel up to any desired order of accuracy in terms of epsilon/eta..

QC 20130924. Updated from manuscript to article in journal.

Available from: 2013-09-24 Created: 2013-09-24 Last updated: 2017-12-06Bibliographically approved1. Analysis and Applications of the Heterogeneous Multiscale Methods for Multiscale Elliptic and Hyperbolic Partial Differential Equations$(function(){PrimeFaces.cw("OverlayPanel","overlay651118",{id:"formSmash:j_idt1498:0:j_idt1503",widgetVar:"overlay651118",target:"formSmash:j_idt1498:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Analysis and Applications of Heterogeneous Multiscale Methods for Multiscale Partial Differential Equations$(function(){PrimeFaces.cw("OverlayPanel","overlay788665",{id:"formSmash:j_idt1498:1:j_idt1503",widgetVar:"overlay788665",target:"formSmash:j_idt1498:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2068",{id:"formSmash:j_idt2068",widgetVar:"widget_formSmash_j_idt2068",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2133",{id:"formSmash:lower:j_idt2133",widgetVar:"widget_formSmash_lower_j_idt2133",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2134_j_idt2136",{id:"formSmash:lower:j_idt2134:j_idt2136",widgetVar:"widget_formSmash_lower_j_idt2134_j_idt2136",target:"formSmash:lower:j_idt2134:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});