Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving feature level likelihoods using cloud features
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
2012 (engelsk)Inngår i: ICPRAM - Proc. Int. Conf. Pattern Recogn. Appl. Methods, 2012, s. 431-437Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The performance of many computer vision methods depends on the quality of the local features extracted from the images. For most methods the local features are extracted independently of the task and they remain constant through the whole process. To make features more dynamic and give models a choice in the features they can use, this work introduces a set of intermediate features referred as cloud features. These features take advantage of part-based models at the feature level by combining each extracted local feature with its close by local feature creating a cloud of different representations for each local features. These representations capture the local variations around the local feature. At classification time, the best possible representation is pulled out of the cloud and used in the calculations. This selection is done based on several latent variables encoded within the cloud features. The goal of this paper is to test how the cloud features can improve the feature level likelihoods. The focus of the experiments of this paper is on feature level inference and showing how replacing single features with equivalent cloud features improves the likelihoods obtained from them. The experiments of this paper are conducted on several classes of MSRCv1 dataset.

sted, utgiver, år, opplag, sider
2012. s. 431-437
Serie
ICPRAM 2012 - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods ; 2
Emneord [en]
Clustering, Feature inference, Latent models, Classification time, Data sets, Feature level, Latent variable, Local feature, Local variations, Whole process, Experiments, Computer vision
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-128697Scopus ID: 2-s2.0-84862197327ISBN: 9789898425980 (tryckt)OAI: oai:DiVA.org:kth-128697DiVA, id: diva2:653136
Konferanse
1st International Conference on Pattern Recognition Applications and Methods, ICPRAM 2012, 6 February 2012 through 8 February 2012, Vilamoura, Algarve
Merknad

QC 20131003

Tilgjengelig fra: 2013-10-03 Laget: 2013-09-16 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Søk i DiVA

Av forfatter/redaktør
Maboudi Afkham, HeydarCarlsson, StefanSullivan, Josephine
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 79 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf