Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Prediction and optimization of fireproofing properties of intumescent flame retardant coatings using artificial intelligence techniques
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.ORCID-id: 0000-0002-7348-0004
Vise andre og tillknytning
2013 (engelsk)Inngår i: Fire safety journal, ISSN 0379-7112, E-ISSN 1873-7226, Vol. 61, s. 193-199Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A multi-structured architecture of artificial intelligence techniques including artificial neural network (ANN), adaptive neuro-fuzzy-inference-system (ANFIS) and genetic algorithm (GA) were developed to predict and optimize the fireproofing properties of a model intumescent flame retardant coating including ammonium polyphosphate, pentaerythritol, melamine, thermoplastic acrylic resin and liquid hydrocarbon resin. By implementing ANN on heat insulation results of coating samples, prepared based on a L16 orthogonal array, mean fireproofing time (MFPT) values were properly predicted. The predicted data were then proved to be valid through performing closeness examinations on fuzzy inference systems results regarding their experimental counterparts. However, the possible deviations tapped into phenomena like foam detachment and char cracking were alleviated by ANFIS modeling embedded with pertinent fuzzy rules based on the sole and associative practical role of used additives. The contribution of each intumescent coating component on the formulation with optimized fireproofing behavior was then explored using GA modeling. A similar optimization procedure was also conducted using conventional Taguchi experimental design but the GA based optimized intumescent coating was found to exhibit higher MFPT value than that suggested by the Taguchi method.

sted, utgiver, år, opplag, sider
2013. Vol. 61, s. 193-199
Emneord [en]
Artificial intelligence techniques, Flame retardant, Genetic algorithm, Intumescent coating
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-133152DOI: 10.1016/j.firesaf.2013.09.006ISI: 000327365700020Scopus ID: 2-s2.0-84884824213OAI: oai:DiVA.org:kth-133152DiVA, id: diva2:660169
Merknad

QC 20131029

Tilgjengelig fra: 2013-10-29 Laget: 2013-10-28 Sist oppdatert: 2017-12-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Akhlaghi, Shahin

Søk i DiVA

Av forfatter/redaktør
Akhlaghi, ShahinGedde, Ulf W.Hedenqvist, Mikael S.
Av organisasjonen
I samme tidsskrift
Fire safety journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 688 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf