kth.sePublications

Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt186",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt967",{id:"formSmash:j_idt967",widgetVar:"widget_formSmash_j_idt967",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
#### Other links

Publisher's full textScopus
#### Authority records

Lauria, MassimoNordström, JakobVinyals, Marc
#### Search in DiVA

##### By author/editor

Lauria, MassimoMikša, MladenNordström, JakobVinyals, Marc
##### By organisation

Theoretical Computer Science, TCS
On the subject

Computer and Information Sciences
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1158",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[3,1,1,2,1,3,3,3,128,80]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:140,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:664987'}],ticks:["Oct -23","Dec -23","Jan -24","Feb -24","Mar -24","Apr -24","May -24","Jun -24","Jul -24","Aug -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 468 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1251",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt168",{id:"formSmash:upper:j_idt168",widgetVar:"widget_formSmash_upper_j_idt168",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt169_j_idt171",{id:"formSmash:upper:j_idt169:j_idt171",widgetVar:"widget_formSmash_upper_j_idt169_j_idt171",target:"formSmash:upper:j_idt169:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Towards an understanding of polynomial calculus: New separations and lower bounds (extended abstract)PrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true}); PrimeFaces.cw("SelectBooleanButton","widget_formSmash_j_idt245",{id:"formSmash:j_idt245",widgetVar:"widget_formSmash_j_idt245",onLabel:"Hide others and affiliations",offLabel:"Show others and affiliations"});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2013 (English)In: Automata, Languages, and Programming: 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, Springer, 2013, no PART 1, p. 437-448Conference paper, Published paper (Refereed)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Springer, 2013. no PART 1, p. 437-448
##### Series

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN 0302-9743 ; 7965 LNCS
##### Keywords [en]

Extended abstracts, Lower bounds, Pigeonhole principle, Polynomial calculus, Proof complexity, Proof system, Short cycle, Space complexity
##### National Category

Computer and Information Sciences
##### Identifiers

URN: urn:nbn:se:kth:diva-134074DOI: 10.1007/978-3-642-39206-1_37ISI: 000342686600037Scopus ID: 2-s2.0-84880288724ISBN: 9783642392054 (print)OAI: oai:DiVA.org:kth-134074DiVA, id: diva2:664987
##### Conference

40th International Colloquium on Automata, Languages, and Programming, ICALP 2013; Riga; Latvia; 8 July 2013 through 12 July 2013
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt458",{id:"formSmash:j_idt458",widgetVar:"widget_formSmash_j_idt458",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt464",{id:"formSmash:j_idt464",widgetVar:"widget_formSmash_j_idt464",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt470",{id:"formSmash:j_idt470",widgetVar:"widget_formSmash_j_idt470",multiple:true});
##### Note

##### In thesis

During the last decade, an active line of research in proof complexity has been into the space complexity of proofs and how space is related to other measures. By now these aspects of resolution are fairly well understood, but many open problems remain for the related but stronger polynomial calculus (PC/PCR) proof system. For instance, the space complexity of many standard "benchmark formulas" is still open, as well as the relation of space to size and degree in PC/PCR. We prove that if a formula requires large resolution width, then making XOR substitution yields a formula requiring large PCR space, providing some circumstantial evidence that degree might be a lower bound for space. More importantly, this immediately yields formulas that are very hard for space but very easy for size, exhibiting a size-space separation similar to what is known for resolution. Using related ideas, we show that if a graph has good expansion and in addition its edge set can be partitioned into short cycles, then the Tseitin formula over this graph requires large PCR space. In particular, Tseitin formulas over random 4-regular graphs almost surely require space at least Ω(√n). Our proofs use techniques recently introduced in [Bonacina-Galesi '13]. Our final contribution, however, is to show that these techniques provably cannot yield non-constant space lower bounds for the functional pigeonhole principle, delineating the limitations of this framework and suggesting that we are still far from characterizing PC/PCR space.

QC 20131118

Available from: 2013-11-18 Created: 2013-11-15 Last updated: 2022-06-23Bibliographically approved1. On Complexity Measures in Polynomial Calculus$(function(){PrimeFaces.cw("OverlayPanel","overlay1051001",{id:"formSmash:j_idt744:0:j_idt748",widgetVar:"overlay1051001",target:"formSmash:j_idt744:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Space in Proof Complexity$(function(){PrimeFaces.cw("OverlayPanel","overlay1094244",{id:"formSmash:j_idt744:1:j_idt748",widgetVar:"overlay1094244",target:"formSmash:j_idt744:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1180",{id:"formSmash:j_idt1180",widgetVar:"widget_formSmash_j_idt1180",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1233",{id:"formSmash:lower:j_idt1233",widgetVar:"widget_formSmash_lower_j_idt1233",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1234_j_idt1236",{id:"formSmash:lower:j_idt1234:j_idt1236",widgetVar:"widget_formSmash_lower_j_idt1234_j_idt1236",target:"formSmash:lower:j_idt1234:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});