Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Consequences of membrane topography
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Cellens fysik. KTH, Centra, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0001-5178-7593
2013 (Engelska)Ingår i: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 280, nr 12, s. 2775-2784Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

The surface of mammalian cells is neither smooth nor flat and cells have several times more plasma membrane than the minimum area required to accommodate their shape. We discuss the biological function of this apparent excess membrane that allows the cells to migrate and undergo shape changes and probably plays a role in signal transduction. Methods for studying membrane folding and topography - atomic force microscopy, scanning ion conductance microscopy, fluorescence polarization microscopy and linear dichroism - are described and evaluated. Membrane folding and topography is frequently ignored when interpreting microscopy data. This has resulted in several misconceptions regarding for instance colocalization, membrane organization and molecular clustering. We suggest simple ways to avoid these pitfalls and invoke Occam's razor - that simple explanations are preferable to complex ones. Topography, i.e. deviations from a smooth surface, should always be ruled out as the cause of anomalous data before other explanations are presented. Cell membranes are convoluted into submicrometer ruffles, which are impossible to resolve by most experimental techniques. Here we discuss the importance of considering such subresolution membrane organization when interpreting experimental data and give some examples of techniques where membrane topography can be probed. Finally we speculate what consequences ruffling could have for cellular processes, e. g. receptor signaling.

Ort, förlag, år, upplaga, sidor
2013. Vol. 280, nr 12, s. 2775-2784
Nyckelord [en]
cell shape, cell signalling, diffusion, linear dichroism, membrane models, plasma membrane, probe orientation, scanning ion conductance microscopy, topography
Nationell ämneskategori
Biokemi och molekylärbiologi
Identifikatorer
URN: urn:nbn:se:kth:diva-134282DOI: 10.1111/febs.12209ISI: 000320037900006PubMedID: 23438106Scopus ID: 2-s2.0-84878763652OAI: oai:DiVA.org:kth-134282DiVA, id: diva2:666227
Forskningsfinansiär
VetenskapsrådetStiftelsen för strategisk forskning (SSF)Science for Life Laboratory - a national resource center for high-throughput molecular bioscience
Anmärkning

QC 20131122

Tillgänglig från: 2013-11-22 Skapad: 2013-11-20 Senast uppdaterad: 2020-03-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Önfelt, Björn

Sök vidare i DiVA

Av författaren/redaktören
Önfelt, Björn
Av organisationen
Cellens fysikScience for Life Laboratory, SciLifeLab
I samma tidskrift
The FEBS Journal
Biokemi och molekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 90 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf