Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Catalytic Combustion Developments for Ultra Low Emission Gas Turbine Combustion
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Kemisk teknologi.
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
Visa övriga samt affilieringar
2003 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Ort, förlag, år, upplaga, sidor
2003.
Nationell ämneskategori
Energiteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-134603OAI: oai:DiVA.org:kth-134603DiVA, id: diva2:666952
Konferens
7 th International Conference on Energy for Clean Environment, Clean Air 2003, Lisbon Portugal, July 2003
Anmärkning

QC 20131125

Tillgänglig från: 2013-11-25 Skapad: 2013-11-25 Senast uppdaterad: 2013-11-25Bibliografiskt granskad
Ingår i avhandling
1. Experimental Investigations of High Pressure Catalytic Combustion for Gas Turbine Applications
Öppna denna publikation i ny flik eller fönster >>Experimental Investigations of High Pressure Catalytic Combustion for Gas Turbine Applications
2013 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This work is devoted to generate knowledge and high quality experimental data of catalytic combustion at operational gas turbine conditions.

The initial task of the thesis work was to design and construct a high pressure combustion test facility, where the catalytic combustion experiments can be performed at real gas turbine conditions. With this in mind, a highly advanced combustion test facility has been designed, constructed and tested. This test facility is capable of simulating combustion conditions relevant to a wide range of operating gas turbine conditions and different kinds of fuel gases. The shape of the combustor (test section) is similar to a “can” type gas turbine combustor, but with significant differences in its type of operation. The test combustor is expected to operate at near adiabatic combustion conditions and there will be no additions of cooling, dilution or secondary supply of air into the combustion process. The geometry of the combustor consists of three main zones such as air/fuel mixing zone, catalytic reaction zone and downstream gas phase reaction zone with no difference of the mass flow at inlet and exit. The maximum capacity of the test facility is 100 kW (fuel power) and the maximum air flow rate is 100g/s.

The significant features of the test facility are counted as its operational pressure range (1 – 35 atm), air inlet temperatures (100 – 650 °C), fuel flexibility (LHV 4 - 40 MJ/m3) and air humidity (0 – 30% kg/kg of air). Given these features, combustion could be performed at any desired pressure up to 35 bars while controlling other parameters independently. Fuel flexibility of the applications was also taken into consideration in the design phase and proper measures have been taken in order to utilize two types of targeted fuels, methane and gasified biomass.

Experimental results presented in this thesis are the operational performances of highly active precious metal catalysts (also called as ignition catalysts) and combinations of precious metal, perovskites and hexaaluminate catalysts (also called as fully catalytic configuration). Experiments were performed on different catalytic combustor configurations of various types of catalysts with methane and simulated gasified biomass over the full range of pressure. The types of catalysts considered on the combustor configurations are palladium on alumina (Pd/AL2O3), palladium lanthanum hexaaluminate (PdLaAl11O19), platinum on alumina (Pt/AL2O3),and palladium:platinum bi-metal on alumina (Pd:Pt/AL2O3). The influence of pressure, inlet temperature, flow velocity and air fuel ratio on the ignition, combustion stability and emission generation on the catalytic system were investigated and presented.

Combustion catalysts were developed and provided mainly by the project partner, the Division of Chemical Technology, KTH. Division of Chemical Reaction Technology, KTH and Istituto di Ricerche sulla Combustione (CNR) Italy were also collaborated with some of the experimental investigations by providing specific types of catalysts developed by them for the specific conditions of gas turbine requirements.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2013. s. xxiv, 122
Serie
TRITA-KRV, ISSN 1100-7990 ; 13:10
Nyckelord
Gas Turbine Combustion, Catalytic Combustion, High Pressure, Ultra-low emissions
Nationell ämneskategori
Teknik och teknologier
Forskningsämne
SRA - Energi
Identifikatorer
urn:nbn:se:kth:diva-134445 (URN)978-91-7501-937-6 (ISBN)
Disputation
2013-12-11, M3, Brinellvägen 64, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Energimyndigheten
Anmärkning

QC 20131125

Tillgänglig från: 2013-11-25 Skapad: 2013-11-25 Senast uppdaterad: 2017-03-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Jayasuriya, JeevanErsson, AndreasFredriksson, JanFransson, TorstenJärås, Sven
Av organisationen
Kraft- och värmeteknologiKemisk teknologi
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 52 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf