Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Koopman-mode decomposition of the cylinder wake
KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.ORCID-id: 0000-0002-8209-1449
2013 (engelsk)Inngår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 726, s. 596-623Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The Koopman operator provides a powerful way of analysing nonlinear flow dynamics using linear techniques. The operator defines how observables evolve in time along a nonlinear flow trajectory. In this paper, we perform a Koopman analysis of the first Hopf bifurcation of the flow past a circular cylinder. First, we decompose the flow into a sequence of Koopman modes, where each mode evolves in time with one single frequency/growth rate and amplitude/phase, corresponding to the complex eigenvalues and eigenfunctions of the Koopman operator, respectively. The analytical construction of these modes shows how the amplitudes and phases of nonlinear global modes oscillating with the vortex shedding frequency or its harmonics evolve as the flow develops and later sustains self-excited oscillations. Second, we compute the dynamic modes using the dynamic mode decomposition (DMD) algorithm, which fits a linear combination of exponential terms to a sequence of snapshots spaced equally in time. It is shown that under certain conditions the DMD algorithm approximates Koopman modes, and hence provides a viable method to decompose the flow into saturated and transient oscillatory modes. Finally, the relevance of the analysis to frequency selection, global modes and shift modes is discussed.

sted, utgiver, år, opplag, sider
2013. Vol. 726, s. 596-623
Emneord [en]
instability, nonlinear dynamical systems, vortex shedding, Dynamic mode decompositions, Frequency selection, Linear combinations, Linear techniques, Oscillatory mode, Self excited oscillation, Single frequency, Vortex shedding frequency, Algorithms, Circular cylinders, Eigenvalues and eigenfunctions, Hopf bifurcation, Nonlinear analysis, Plasma stability, Oscillating flow, algorithm, bifurcation, cylinder, eigenvalue, nonlinearity, trajectory, wake
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-134488DOI: 10.1017/jfm.2013.249ISI: 000327870600011Scopus ID: 2-s2.0-84883199345OAI: oai:DiVA.org:kth-134488DiVA, id: diva2:666987
Forskningsfinansiär
Swedish Research Council, VR-2010-3910
Merknad

QC 20131125

Tilgjengelig fra: 2013-11-25 Laget: 2013-11-25 Sist oppdatert: 2017-12-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Bagheri, Shervin

Søk i DiVA

Av forfatter/redaktør
Bagheri, Shervin
Av organisasjonen
I samme tidsskrift
Journal of Fluid Mechanics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 570 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf