Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation
KTH, Skolan för teknikvetenskap (SCI), Mekanik, Turbulens. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
KTH, Skolan för teknikvetenskap (SCI), Mekanik, Turbulens. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.ORCID-id: 0000-0001-8692-0956
KTH, Skolan för teknikvetenskap (SCI), Mekanik, Turbulens. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.ORCID-id: 0000-0002-9819-2906
KTH, Skolan för teknikvetenskap (SCI), Mekanik, Turbulens. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.ORCID-id: 0000-0002-2711-4687
2013 (Engelska)Ingår i: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 25, nr 10, s. 105112-Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The explicit algebraic Reynolds stress model of Wallin and Johansson [J. Fluid Mech. 403, 89 (2000)] is extended to compressible and variable-density turbulent flows. This is achieved by correctly taking into account the influence of the mean dilatation on the rapid pressure-strain correlation. The resulting model is formally identical to the original model in the limit of constant density. For two-dimensional mean flows the model is analyzed and the physical root of the resulting quartic equation is identified. Using a fixed-point analysis of homogeneously sheared and strained compressible flows, we show that the new model is realizable, unlike the previous model. Application of the model together with a K - omega model to quasi one-dimensional plane nozzle flow, transcending from subsonic to supersonic regime, also demonstrates realizability. Negative "dilatational" production of turbulence kinetic energy competes with positive "incompressible" production, eventually making the total production negative during the spatial evolution of the nozzle flow. Finally, an approach to include the baroclinic effect into the dissipation equation is proposed and an algebraic model for density-velocity correlations is outlined to estimate the corrections associated with density fluctuations. All in all, the new model can become a significant tool for CFD (computational fluid dynamics) of compressible flows.

Ort, förlag, år, upplaga, sidor
2013. Vol. 25, nr 10, s. 105112-
Nyckelord [en]
Rapid Pressure-Strain, Scalar-Flux, Shear Flows, Dissipation, Closures
Nationell ämneskategori
Annan fysik
Identifikatorer
URN: urn:nbn:se:kth:diva-134751DOI: 10.1063/1.4825282ISI: 000326642800047Scopus ID: 2-s2.0-84887002294OAI: oai:DiVA.org:kth-134751DiVA, id: diva2:668210
Forskningsfinansiär
Vetenskapsrådet, 2010-3938 2010-6965 2010-4147
Anmärkning

QC 20131129

Tillgänglig från: 2013-11-29 Skapad: 2013-11-28 Senast uppdaterad: 2017-12-06Bibliografiskt granskad
Ingår i avhandling
1. Turbulence modeling of compressible flows with large density variation
Öppna denna publikation i ny flik eller fönster >>Turbulence modeling of compressible flows with large density variation
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In this study we highlight the influence of mean dilatation and mean density gradient on the Reynolds stress modeling of compressible, heat-releasing and supercritical turbulent flows.Firstly, the modeling of the rapid pressure-strain correlation has been extended to self-consistently account for the influence of mean dilatation.Secondly, an algebraic model for the turbulent density flux has been developed and coupled to the tensor equationfor Reynolds stress anisotropy via a 'local mean acceleration',a generalization of the buoyancy force.

We applied the resulting differential Reynolds stress model (DRSM) and the corresponding explicit algebraic Reynolds stress model (EARSM) to homogeneously sheared and compressed or expanded two-dimensional mean flows. Both formulations have shown that our model preserves the realizability of the turbulence, meaning that the Reynolds stresses do not attain unphysical values, unlike earlier approaches. Comparison with rapid distortion theory (RDT) demonstrated that the DRSM captures the essentials of the transient behaviour of the diagonal anisotropies and gives good predictions of the turbulence kinetic energy.

A general three-dimensional solution to the coupled EARSM  has been formulated. In the case of turbulent flow in de Laval nozzle we investigated the influence of compressibility effects and demonstrated that the different calibrations lead to different turbulence regimes but with retained realizability. We calibrated our EARSM against a DNS of combustion in a wall-jet flow. Correct predictions of turbulent density fluxes have been achieved and essential features of the anisotropy behaviour have been captured.The proposed calibration keeps the model free of singularities for the cases studied. In addition,  we have applied the EARSM to the investigation of supercritical carbon dioxide flow in an annulus. The model correctly captured mean enthalpy, temperature and density as well as the turbulence shear stress. Hence, we consider the model as a useful tool for the analysis of a wide range of compressible flows with large density variation.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2016. s. xiv, 50
Serie
TRITA-MEK, ISSN 0348-467X ; 2916:03
Nyckelord
Turbulence, DRSM, EARSM, active scalar, compressible flow, reacting flow, supercritical flow
Nationell ämneskategori
Teknisk mekanik
Forskningsämne
Teknisk mekanik
Identifikatorer
urn:nbn:se:kth:diva-183452 (URN)978-91-7595-887-3 (ISBN)
Disputation
2016-04-01, D3, Lindstedtsvägen 5, KTH, Stockholm, 10:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet, 621-2010-3938
Anmärkning

QC 20160314

Tillgänglig från: 2016-03-14 Skapad: 2016-03-11 Senast uppdaterad: 2016-04-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Wallin, StefanBrethouwer, GertJohansson, Arne V.

Sök vidare i DiVA

Av författaren/redaktören
Grigoriev, Igor A.Wallin, StefanBrethouwer, GertJohansson, Arne V.
Av organisationen
TurbulensLinné Flow Center, FLOW
I samma tidskrift
Physics of fluids
Annan fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 246 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf