Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Nonlinear evolution of the magnetized Kelvin-Helmholtz instability: From fluid to kinetic modeling
Vise andre og tillknytning
2013 (engelsk)Inngår i: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 20, nr 10, s. 102118-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The nonlinear evolution of collisionless plasmas is typically a multi-scale process, where the energy is injected at large, fluid scales and dissipated at small, kinetic scales. Accurately modelling the global evolution requires to take into account the main micro-scale physical processes of interest. This is why comparison of different plasma models is today an imperative task aiming at understanding cross-scale processes in plasmas. We report here the first comparative study of the evolution of a magnetized shear flow, through a variety of different plasma models by using magnetohydrodynamic (MHD), Hall-MHD, two-fluid, hybrid kinetic, and full kinetic codes. Kinetic relaxation effects are discussed to emphasize the need for kinetic equilibriums to study the dynamics of collisionless plasmas in non trivial configurations. Discrepancies between models are studied both in the linear and in the nonlinear regime of the magnetized Kelvin-Helmholtz instability, to highlight the effects of small scale processes on the nonlinear evolution of collisionless plasmas. We illustrate how the evolution of a magnetized shear flow depends on the relative orientation of the fluid vorticity with respect to the magnetic field direction during the linear evolution when kinetic effects are taken into account. Even if we found that small scale processes differ between the different models, we show that the feedback from small, kinetic scales to large, fluid scales is negligible in the nonlinear regime. This study shows that the kinetic modeling validates the use of a fluid approach at large scales, which encourages the development and use of fluid codes to study the nonlinear evolution of magnetized fluid flows, even in the collisionless regime.

sted, utgiver, år, opplag, sider
2013. Vol. 20, nr 10, s. 102118-
Emneord [en]
Current Advance Method, Ion Larmor Radius, Plasma, Simulations, Vortices, Magnetopause, Boundary, Parallel, Schemes, Fields
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-136511DOI: 10.1063/1.4826214ISI: 000326644100036Scopus ID: 2-s2.0-84887252595OAI: oai:DiVA.org:kth-136511DiVA, id: diva2:676708
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, 263340, RI-283493, 2012071282
Merknad

QC 20131206

Tilgjengelig fra: 2013-12-06 Laget: 2013-12-05 Sist oppdatert: 2017-12-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Markidis, Stefano

Søk i DiVA

Av forfatter/redaktør
Markidis, Stefano
Av organisasjonen
I samme tidsskrift
Physics of Plasmas

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 223 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf