Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Functional Object Descriptors for Human Activity Modeling
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.ORCID-id: 0000-0003-2314-2880
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.ORCID-id: 0000-0002-5750-9655
2013 (engelsk)Inngår i: 2013 IEEE International Conference on Robotics and Automation (ICRA), IEEE conference proceedings, 2013, s. 1282-1289Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The ability to learn from human demonstration is essential for robots in human environments. The activity models that the robot builds from observation must take both the human motion and the objects involved into account. Object models designed for this purpose should reflect the role of the object in the activity - its function, or affordances. The main contribution of this paper is to represent object directly in terms of their interaction with human hands, rather than in terms of appearance. This enables the direct representation of object affordances/function, while being robust to intra-class differences in appearance. Object hypotheses are first extracted from a video sequence as tracks of associated image segments. The object hypotheses are encoded as strings, where the vocabulary corresponds to different types of interaction with human hands. The similarity between two such object descriptors can be measured using a string kernel. Experiments show these functional descriptors to capture differences and similarities in object affordances/function that are not represented by appearance.

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2013. s. 1282-1289
Serie
IEEE International Conference on Robotics and Automation, ISSN 1050-4729
Emneord [en]
Activity models, Functional object, Human activities, Human demonstrations, Human environment, Image segments, Object descriptors, Video sequences
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-138526DOI: 10.1109/ICRA.2013.6630736ISI: 000337617301042Scopus ID: 2-s2.0-84887281861ISBN: 978-1-4673-5641-1 (tryckt)OAI: oai:DiVA.org:kth-138526DiVA, id: diva2:681275
Konferanse
2013 IEEE International Conference on Robotics and Automation, ICRA 2013; Karlsruhe; Germany; 6 May 2013 through 10 May 2013
Merknad

QC 20140107

Tilgjengelig fra: 2013-12-19 Laget: 2013-12-19 Sist oppdatert: 2018-01-11bibliografisk kontrollert
Inngår i avhandling
1. Action Recognition for Robot Learning
Åpne denne publikasjonen i ny fane eller vindu >>Action Recognition for Robot Learning
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis builds on the observation that robots cannot be programmed to handle any possible situation in the world. Like humans, they need mechanisms to deal with previously unseen situations and unknown objects. One of the skills humans rely on to deal with the unknown is the ability to learn by observing others. This thesis addresses the challenge of enabling a robot to learn from a human instructor. In particular, it is focused on objects. How can a robot find previously unseen objects? How can it track the object with its gaze? How can the object be employed in activities? Throughout this thesis, these questions are addressed with the end goal of allowing a robot to observe a human instructor and learn how to perform an activity. The robot is assumed to know very little about the world and it is supposed to discover objects autonomously. Given a visual input, object hypotheses are formulated by leveraging on common contextual knowledge often used by humans (e.g. gravity, compactness, convexity). Moreover, unknown objects are tracked and their appearance is updated over time since only a small fraction of the object is visible from the robot initially. Finally, object functionality is inferred by looking how the human instructor is manipulating objects and how objects are used in relation to others. All the methods included in this thesis have been evaluated on datasets that are publicly available or that we collected, showing the importance of these learning abilities.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2015. s. v, 38
Serie
TRITA-CSC-A, ISSN 1653-5723 ; 2015:09
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
urn:nbn:se:kth:diva-165680 (URN)
Disputas
2015-05-21, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad

QC 20150504

Tilgjengelig fra: 2015-05-04 Laget: 2015-04-29 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

fulltext(3745 kB)206 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3745 kBChecksum SHA-512
1b4d2c1931c0c963509ea865c2288c9d6a4d5b64f514d0e10ff3d0f525fdf61f764eee3ec4545daba76a67c7101d9a4f11e8ae646a8f439afeeb579f1bd46998
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopusIEEEXplore

Personposter BETA

Pieropan, AlessandroKjellström, Hedvig

Søk i DiVA

Av forfatter/redaktør
Pieropan, AlessandroEk, Carl HenrikKjellström, Hedvig
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 206 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 152 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf