Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Portable bioimpedance monitor evaluation for continuous impedance measurements: Towards wearable plethysmography applications
School of Engineering, University of Borås, Borås 501 90, Sweden .ORCID-id: 0000-0002-6995-967X
KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinska sensorer, signaler och system.
2013 (Engelska)Ingår i: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2013, s. 559-562Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Personalised Health Systems (PHS) that could benefit the life quality of the patients as well as decreasing the health care costs for society among other factors are arisen. The purpose of this paper is to study the capabilities of the System-on-Chip Impedance Network Analyser AD5933 performing high speed single frequency continuous bioimpedance measurements. From a theoretical analysis, the minimum continuous impedance estimation time was determined, and the AD5933 with a custom 4-Electrode Analog Front-End (AFE) was used to experimentally determine the maximum continuous impedance estimation frequency as well as the system impedance estimation error when measuring a 2R1C electrical circuit model. Transthoracic Electrical Bioimpedance (TEB) measurements in a healthy subject were obtained using 3M gel electrodes in a tetrapolar lateral spot electrode configuration. The obtained TEB raw signal was filtered in MATLAB to obtain the respiration and cardiogenic signals, and from the cardiogenic signal the impedance derivative signal (dZ/dt) was also calculated. The results have shown that the maximum continuous impedance estimation rate was approximately 550 measurements per second with a magnitude estimation error below 1% on 2R1C-parallel bridge measurements. The displayed respiration and cardiac signals exhibited good performance, and they could be used to obtain valuable information in some plethysmography monitoring applications. The obtained results suggest that the AD5933-based monitor could be used for the implementation of a portable and wearable Bioimpedance plethysmograph that could be used in applications such as Impedance Cardiography. These results combined with the research done in functional garments and textile electrodes might enable the implementation of PHS applications in a relatively short time from now.

Ort, förlag, år, upplaga, sidor
2013. s. 559-562
Serie
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, ISSN 1557-170X
Nyckelord [en]
Bioimpedance measurement, Electrical bio-impedance, Electrical circuit models, Electrode configurations, Impedance cardiography, Impedance measurement, Monitoring applications, Personalised health systems, Application specific integrated circuits, Biomedical equipment, Electric impedance measurement, Electric network analysis, Electrodes, Frequency estimation, Plethysmography, Electric impedance
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-140000DOI: 10.1109/EMBC.2013.6609561Scopus ID: 2-s2.0-84886466230ISBN: 9781457702167 (tryckt)OAI: oai:DiVA.org:kth-140000DiVA, id: diva2:688570
Konferens
2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013; Osaka, Japan, 3-7 July 2013
Anmärkning

QC 20140117

Tillgänglig från: 2014-01-17 Skapad: 2014-01-16 Senast uppdaterad: 2017-05-17Bibliografiskt granskad
Ingår i avhandling
1. Modular textile-enabled bioimpedance system for personalized health monitoring applications
Öppna denna publikation i ny flik eller fönster >>Modular textile-enabled bioimpedance system for personalized health monitoring applications
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

A growing number of factors, including costs, technological advancements, ageing populations, and medical errors, are leading industrialized countries to invest in research on alternative solutions to improve their health-care systems and increase patients’ quality of life. Personal health systems (PHS) examplify the use of information and communication technologies that enable a paradigm shift from the traditional hospital-centered healthcare delivery model toward a preventive and person-centered approach. PHS offer the means to monitor a patient’s health using wearable, portable or implantable systems that offer ubiquitous, unobtrusive biodata

acquisition, allowing remote monitoring of treatment and access to the patient’s status. Electrical bioimpedance (EBI) technology is non-invasive, quick and relatively affordable technique that can be used for assessing and monitoring different health conditions, e.g., body composition assessments for nutrition. When combined with state-of-the-art advances in sensors and textiles, EBI technologies are fostering the implementation of wearable bioimpedance monitors that use functional garments for personalized healthcare applications. This research work is

focused on the development of wearable EBI-based monitoring systems for ubiquitous health monitoring applications. The monitoring systems are built upon portable monitoring instrumentation and custom-made textile electrode garments.

Portable EBI-based monitors have been developed using the latest material technology and advances in system-on-chip technology. For instance, a portable EBI spectrometer has been validated against a commercial spectrometer for total body composition assessment using functional textile electrode garments. The development of wearable EBI-based monitoring units using functional garments and dry textile electrodes for body composition assessment and respiratory monitoring has been shown to be a feasible approach. The availability of these measurement systems indicates progress toward the real implementation of personalized healthcare systems.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2017. s. 89
Serie
TRITA-STH ; 2017:6
Nyckelord
personal healthcare system, electrical bioimpedance, wearable sensors, pervasive monitoring, portable monitoring, body composition, chronic kidney disease, wireless sensor, ubiquitous, instrumentation
Nationell ämneskategori
Medicinsk laboratorie- och mätteknik
Forskningsämne
Teknik och hälsa
Identifikatorer
urn:nbn:se:kth:diva-207135 (URN)978-91-7729-377-4 (ISBN)
Disputation
2017-06-02, M402, Allégatan 1, Borås, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20170517

Tillgänglig från: 2017-05-17 Skapad: 2017-05-17 Senast uppdaterad: 2017-05-17Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Seoane, Fernando

Sök vidare i DiVA

Av författaren/redaktören
Seoane, FernandoLindecrantz, Kaj
Av organisationen
Medicinska sensorer, signaler och system
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 480 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf