Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Character of particle-hole excitations in Ru-94 deduced from gamma-ray angular correlation and linear polarization measurements
KTH, Skolan för teknikvetenskap (SCI), Fysik, Kärnfysik.ORCID-id: 0000-0001-6039-2067
KTH, Skolan för teknikvetenskap (SCI), Fysik, Kärnfysik.ORCID-id: 0000-0002-1406-5695
KTH, Skolan för teknikvetenskap (SCI), Fysik, Kärnfysik.ORCID-id: 0000-0003-1771-2656
KTH, Skolan för teknikvetenskap (SCI), Fysik, Kärnfysik.
Vise andre og tillknytning
2014 (engelsk)Inngår i: Physical Review C. Nuclear Physics, ISSN 0556-2813, E-ISSN 1089-490X, Vol. 89, nr 1, s. 0143011-0143019Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Linear polarization and angular correlations of γ-rays depopulating excited states in the neutron-deficient nucleus 9444Ru50 have been measured, enabling firm spin-parity assignments for several excited states in this nucleus. The deduced multipolarities of strong transitions in the yrast structure were found to be mostly of stretched M1, E1, and E2 types and, in most cases, in agreement with previous tentative assignments. The deduced multipolarity of the 1869 keV and the connecting 257 and 1641 keV transitions indicates that the state at 6358 keV excitation energy has spin parity 12−1 rather than 12+3 as proposed in previous works. The presence of a 12−1 state is interpreted within the framework of large-scale shell-model calculations as a pure proton-hole state dominated by the π(p−11/2⊗g−59/2) and π(p−13/2⊗g−59/2) configurations. A new positive-parity state is observed at 6103 keV and is tentatively assigned as 12+2. The 14−1 state proposed earlier is reassigned as 13−4 and is interpreted as being dominated by neutron particle-hole core excitations. The strengths of several E1 transitions have been measured and are found to provide a signature of core-excited configurations.

sted, utgiver, år, opplag, sider
2014. Vol. 89, nr 1, s. 0143011-0143019
Emneord [en]
Gamma-ray spectrosopy-polarization
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-141458DOI: 10.1103/PhysRevC.89.014301ISI: 000332148300001Scopus ID: 2-s2.0-84894470659OAI: oai:DiVA.org:kth-141458DiVA, id: diva2:697064
Forskningsfinansiär
Swedish Research Council, 621-2010-4723 621-2012-3805EU, FP7, Seventh Framework Programme, 262010
Merknad

QC 20140217. Author count: 35

Tilgjengelig fra: 2014-02-17 Laget: 2014-02-17 Sist oppdatert: 2017-12-06bibliografisk kontrollert
Inngår i avhandling
1. Experimental Nuclear Structure Studies in the Vicinityof the N = Z Nucleus 100Sn and in the ExtremelyNeutron Deficient 162Ta Nucleus
Åpne denne publikasjonen i ny fane eller vindu >>Experimental Nuclear Structure Studies in the Vicinityof the N = Z Nucleus 100Sn and in the ExtremelyNeutron Deficient 162Ta Nucleus
2014 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This work covers spectroscopic studies of nuclei from different regions of the Segré chart whose properties illustrate the delicate balance between the forces in the atomic nucleus. Studies of nuclei far from stability offer new insights into the complex nucleon many-body problem. In nuclei with equal neutron and proton numbers (N = Z), the unique nature of the atomic nucleus as an object composed of two distinct types of fermions can be expressed as enhanced correlations arising between neutrons and protons occupying orbitals with the same quantum numbers. The bound N = Z nuclei with mass number A > 90 can only be produced in the laboratory at very low cross sections. The related problems of identifying and distinguishing such reaction products and their associated gamma rays have prevented a firm interpretation of their structure even for the lowest excited states until recently. In the present work the experimental difficulties of observation of excited states in the N = Z = 46 nucleus 92Pd have been overcome through the use of a highly efficient, state-of-the-art detector system; the EXOGAM-Neutron Wall-DIAMANT setup, and a prolonged experimental running period. The level spacings in the ground state band of 92Pd give the first experimental evidence for a new spin-aligned neutron-proton (np) paired phase, an unexpected effect of enhanced np correlations for N = Z nuclei in the immediate vicinity of the doubly magic nucleus 100Sn.

Excited states in 94Ru and 95Rh nuclei close to the double magic shell  Z = N = 50 have been studied in order to untangle the ambiguity of the spin and the parity of the lowest-lying states. The observed yrast structures are compared to results of large-scale shell model (LSSM) calculations and the strengths of hindered E1 transitions are used as a sensitive test of the LSSM parameters. The effect of single-particle-hole excitations is discussed in terms of the strength of hindered E1 transitions.

Excited states of the odd-odd nucleus 162Ta have been observed using the JUROGAM/RITU experimental set-up. This nucleus is located in a transitional region in the nuclide chart which is between near-spherical nuclei and well-deformed nuclei, offering the possibility to study the emergence of collective phenomena and nuclear deformation (in particular the degree of triaxiality). The results, which are interpreted in the framework of the cranked shell model with total Routhian surface calculations, suggest an almost axially symmetric nuclear shape. The energy staggering between the signature partners of the yrast rotational bands has been deduced for eight odd-odd isotopes in the neighborhood of 162Ta nucleus and the special observed feature of signature inversion for these nuclei is discussed.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2014. s. viii, 75
Serie
TRITA-FYS, ISSN 0280-316X ; 14:02
Emneord
Nuclear structure
HSV kategori
Forskningsprogram
Fysik
Identifikatorer
urn:nbn:se:kth:diva-141421 (URN)978-91-7595-007-5 (ISBN)
Disputas
2014-02-28, FB52, AlbaNova Universitetscentrum, Roslagstullsbacken 21, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad

QC 20140217

Tilgjengelig fra: 2014-02-14 Laget: 2014-02-14 Sist oppdatert: 2014-05-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Ghazi Moradi, FarnazQi, ChongCederwall, BoBäck, Torbjörn

Søk i DiVA

Av forfatter/redaktør
Ghazi Moradi, FarnazQi, ChongCederwall, BoAtaç, AyşeBäck, TorbjörnLiotta, RobertoDoncel, MariaJohnson, Arne
Av organisasjonen
I samme tidsskrift
Physical Review C. Nuclear Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 89 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf