Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Double Aztec diamonds and the tacnode process
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).ORCID-id: 0000-0003-2943-7006
2014 (Engelska)Ingår i: Advances in Mathematics, ISSN 0001-8708, E-ISSN 1090-2082, Vol. 252, s. 518-571Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Discrete and continuous non-intersecting random processes have given rise to critical "infinite-dimensional diffusions", like the Airy process, the Pearcey process and variations thereof. It has been known that domino tilings of very large Aztec diamonds lead macroscopically to a disordered region within an inscribed ellipse (arctic circle in the homogeneous case), and a regular brick-like region outside the ellipse. The fluctuations near the ellipse, appropriately magnified and away from the boundary of the Aztec diamond, form an Airy process, run with time tangential to the boundary. This paper investigates the domino tiling of two overlapping Aztec diamonds; this situation also leads to non-intersecting random walks and an induced point process; this process is shown to be determinantal. In the large size limit, when the overlap is such that the two arctic ellipses for the single Aztec diamonds merely touch, a new critical process will appear near the point of osculation (tacnode), which is run with a time in the direction of the common tangent to the ellipses: this is the tacnode process. It is also-shown here that this tacnode process is universal: it coincides with the one found in the context of two groups of non-intersecting random walks or also Brownian motions, meeting momentarily.

Ort, förlag, år, upplaga, sidor
2014. Vol. 252, s. 518-571
Nyckelord [en]
Domino tilings, Aztec diamonds, Dyson's Brownian motion, Airy and tacnode processes, Extended kernels
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:kth:diva-141956DOI: 10.1016/j.aim.2013.10.012ISI: 000330153100019Scopus ID: 2-s2.0-84889675905OAI: oai:DiVA.org:kth-141956DiVA, id: diva2:699632
Forskningsfinansiär
VetenskapsrådetKnut och Alice Wallenbergs Stiftelse, KAW 2010.0063
Anmärkning

QC 20140228

Tillgänglig från: 2014-02-28 Skapad: 2014-02-27 Senast uppdaterad: 2017-12-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Johansson, Kurt

Sök vidare i DiVA

Av författaren/redaktören
Johansson, Kurt
Av organisationen
Matematik (Avd.)
I samma tidskrift
Advances in Mathematics
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 364 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf