Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Tuning spin transport properties and molecular magnetoresistance through contact geometry
KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Materialfysik, MF. KTH, Centra, SeRC - Swedish e-Science Research Centre.ORCID-id: 0000-0001-7788-6127
2014 (engelsk)Inngår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 140, nr 4, s. 044716-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Molecular spintronics seeks to unite the advantages of using organic molecules as nanoelectronic components, with the benefits of using spin as an additional degree of freedom. For technological applications, an important quantity is the molecular magnetoresistance. In this work, we show that this parameter is very sensitive to the contact geometry. To demonstrate this, we perform ab initio calculations, combining the non-equilibrium Green's function method with density functional theory, on a dithienylethene molecule placed between spin-polarized nickel leads of varying geometries. We find that, in general, the magnetoresistance is significantly higher when the contact is made to sharp tips than to flat surfaces. Interestingly, this holds true for both resonant and tunneling conduction regimes, i.e., when the molecule is in its "closed" and "open" conformations, respectively. We find that changing the lead geometry can increase the magnetoresistance by up to a factor of similar to 5. We also introduce a simple model that, despite requiring minimal computational time, can recapture our ab initio results for the behavior of magnetoresistance as a function of bias voltage. This model requires as its input only the density of states on the anchoring atoms, at zero bias voltage. We also find that the non-resonant conductance in the open conformation of the molecule is significantly impacted by the lead geometry. As a result, the ratio of the current in the closed and open conformations can also be tuned by varying the geometry of the leads, and increased by similar to 400%.

sted, utgiver, år, opplag, sider
2014. Vol. 140, nr 4, s. 044716-
Emneord [en]
Single-Molecule, Carbon Nanotube, Conductance, Junctions, Spintronics, Devices, Switch
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-142885DOI: 10.1063/1.4862546ISI: 000331211700086Scopus ID: 2-s2.0-84902156078OAI: oai:DiVA.org:kth-142885DiVA, id: diva2:705033
Forskningsfinansiär
Swedish Research CouncilKnut and Alice Wallenberg FoundationSwedish e‐Science Research Center
Merknad

QC 20140314. Correction in: Journal of Chemical Physics, vol. 140, issue. 22, article nr. 229903, doi: 10.1063/1.4883490, WOS:000337806100056

Tilgjengelig fra: 2014-03-14 Laget: 2014-03-13 Sist oppdatert: 2017-12-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Delin, Anna

Søk i DiVA

Av forfatter/redaktør
Delin, Anna
Av organisasjonen
I samme tidsskrift
Journal of Chemical Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 53 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf