Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Committee Machine Approach for Compressed Sensing Signal Reconstruction
KTH, Skolan för elektro- och systemteknik (EES), Kommunikationsteori.ORCID-id: 0000-0003-2638-6047
2014 (Engelska)Ingår i: IEEE Transactions on Signal Processing, ISSN 1053-587X, E-ISSN 1941-0476, Vol. 62, nr 7, s. 1705-1717Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Although many sparse recovery algorithms have been proposed recently in compressed sensing (CS), it is well known that the performance of any sparse recovery algorithm depends on many parameters like dimension of the sparse signal, level of sparsity, and measurement noise power. It has been observed that a satisfactory performance of the sparse recovery algorithms requires a minimum number of measurements. This minimum number is different for different algorithms. In many applications, the number of measurements is unlikely to meet this requirement and any scheme to improve performance with fewer measurements is of significant interest in CS. Empirically, it has also been observed that the performance of the sparse recovery algorithms also depends on the underlying statistical distribution of the nonzero elements of the signal, which may not be known a priori in practice. Interestingly, it can be observed that the performance degradation of the sparse recovery algorithms in these cases does not always imply a complete failure. In this paper, we study this scenario and show that by fusing the estimates of multiple sparse recovery algorithms, which work with different principles, we can improve the sparse signal recovery. We present the theoretical analysis to derive sufficient conditions for performance improvement of the proposed schemes. We demonstrate the advantage of the proposed methods through numerical simulations for both synthetic and real signals.

Ort, förlag, år, upplaga, sidor
2014. Vol. 62, nr 7, s. 1705-1717
Nyckelord [en]
Committee machine, compressed sensing, signal reconstruction, sparse recovery
Nationell ämneskategori
Signalbehandling Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:kth:diva-144354DOI: 10.1109/TSP.2014.2303941ISI: 000333026100008Scopus ID: 2-s2.0-84897008400OAI: oai:DiVA.org:kth-144354DiVA, id: diva2:713438
Anmärkning

QC 20140423

Tillgänglig från: 2014-04-23 Skapad: 2014-04-22 Senast uppdaterad: 2017-12-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Chatterjee, Saikat

Sök vidare i DiVA

Av författaren/redaktören
Chatterjee, Saikat
Av organisationen
Kommunikationsteori
I samma tidskrift
IEEE Transactions on Signal Processing
SignalbehandlingElektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 417 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf