Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparison of a Brush-with-Anchor and a Train-of-Brushes Mucin on Poly(methyl methacrylate) Surfaces: Adsorption, Surface Forces, and Friction
KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.ORCID-id: 0000-0002-2288-819X
Vise andre og tillknytning
2014 (engelsk)Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 15, nr 4, s. 1515-1525Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Interfacial properties of two types of mucins have been investigated at the aqueous solution/poly(methyl methacrylate) (PMMA) interface. One is commercially available bovine submaxillary mucin, BSM, which consists of alternating glycosylated and nonglycosylated regions. The other one is a recombinant mucin-type fusion protein, PSGL-1/mIgG(2b), consisting of a glycosylated mucin part fused to the Fc part of an immunoglobulin. PSGL-1/mIgG(2b) is mainly expressed as a (timer upon production. A quartz crystal microbalance with dissipation was used to study the adsorption of the mucins to PMMA surfaces. The mass of the adsorbed mucin layers, including the adsorbed mucin and water trapped in the layer, was found to be significantly higher for PSGL-1/mIgG(2b) than for BSM. Atomic force microscopy with colloidal probe was employed to study interactions and frictional forces between mucin-coated PMMA surfaces. Purely repulsive forces of steric origin were Observed between PSGL-1/mIgG(2b) mucin layers, whereas a small adhesion was detected between BSM layers and attributed to bridging. Both mucin layers reduced the friction force between PMMA surfaces in aqueous solution. The reduction was, however, significantly more pronounced for PSGL-1/mIgG(2b). The effective friction coefficient between PSGL-1/mIgG(2b)-coated PMMA surfaces is as low as 0.02 at low loads, increasing to 0.24 at the highest load explored, 50 nN. In contrast, a friction coefficient of around 0.7 was obtained between BSM-coated PMMA surfaces. The large differences in interfacial properties for the two mucins are discussed in relation to their structural differences.

sted, utgiver, år, opplag, sider
2014. Vol. 15, nr 4, s. 1515-1525
Emneord [en]
Quartz-Crystal Microbalance, Giant Papillary Conjunctivitis, Hydrophobic Surfaces, Contact-Lenses, Shear Forces, Qcm-D, Viscoelastic Properties, Microscope Cantilevers, Ocular Surface, Mica Surfaces
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-145592DOI: 10.1021/bm500173sISI: 000334571600046Scopus ID: 2-s2.0-84898657216OAI: oai:DiVA.org:kth-145592DiVA, id: diva2:723618
Forskningsfinansiär
Swedish Research CouncilVinnova
Merknad

QC 20140611

Tilgjengelig fra: 2014-06-11 Laget: 2014-05-23 Sist oppdatert: 2017-12-05bibliografisk kontrollert
Inngår i avhandling
1. Polymers in Aqueous Lubrication
Åpne denne publikasjonen i ny fane eller vindu >>Polymers in Aqueous Lubrication
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The main objective of this thesis work was to gain understanding of the layer properties and polymer structures that were able to aid lubrication in aqueous media. To this end, three types of polyelectrolytes: a diblock copolymer, a train-of-brushes and two brush-with-anchor mucins have been utilized. Their lubrication ability in the boundary lubrication regime has been examined by Atomic Force Microscopy with colloidal probe.

The interfacial behavior of the thermoresponsive diblock copolymer, PIPOZ60-b-PAMPTAM17,on silica was studied in the temperature interval 25-50 ˚C. The main finding is that adsorption hysteresis, due to the presence of trapped states, is important when the adsorbed layers are in contact with a dilute polymer solution. The importance of trapped states was also demonstrated in the measured friction forces, where significantly lower friction forces, at a given temperature, were encountered on cooling than on the preceding heating stage, which was attributed to increased adsorbed amount. On the heating stage the friction force decreased with increasing temperature despite the worsening of the solvent condition, and the opposite trend was observed when using pre-adsorbed layers (constant adsorbed amount) as a consequence of increased segment-segment attraction.

The second part of the studies was devoted to the interfacial properties of mucins on PMMA. The strong affinity provided by the anchoring group of C-PSLex and C-P55 together with their more extended layer structure contribute to the superior lubrication of PMMA compared to BSM up to pressures of 8-9 MPa. This is a result of minor bridging and lateral motion of molecules along the surface during shearing. We further studied the influence of glycosylation on interfacial properties of mucin by utilizing the highly purified mucins, C-P55 and C-PSLex. Our data suggest that the longer and more branched carbohydrate side chains on C-PSLex provide lower interpenetration and better hydration lubrication at low loads compared to the shorter carbohydrate chains on C-P55. However, the longer carbohydrates appear to counteract disentanglement less efficiently, giving rise to a higher friction force at high loads.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2017. s. 66
Serie
TRITA-CHE-Report, ISSN 1654-1081 ; 2017:15
Emneord
Lubrication, boundary lubrication, friction, surface forces, adsorption, adsorption hysteresis, non-equilibrium state, diblock copolymer, polyelectrolyte, thermoresponsive, mucin, QCM-D, ellipsometry, AFM
HSV kategori
Forskningsprogram
Kemi
Identifikatorer
urn:nbn:se:kth:diva-204931 (URN)978-91-7729-305-7 (ISBN)
Disputas
2017-03-31, Kollegiesalen, Brinellvägen 8, KTH-campus, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad

QC 20170407

Tilgjengelig fra: 2017-04-07 Laget: 2017-04-04 Sist oppdatert: 2017-04-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Dédinaité, Andra

Søk i DiVA

Av forfatter/redaktør
An, JunxueDédinaité, AndraClaesson, Per M.
Av organisasjonen
I samme tidsskrift
Biomacromolecules

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 724 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf