Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Non-ideal Stirling engine thermodynamic model suitable for the integration into overall energy systems
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. Universidad Mayor de San Simon (UMSS), Bolivia.ORCID-id: 0000-0002-9254-3453
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.ORCID-id: 0000-0002-3950-0809
Universidad Mayor de San Simon (UMSS), Bolivia.
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
2014 (Engelska)Ingår i: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, ISSN 1359-4311, Vol. 73, nr 1, s. 203-219Artikel i tidskrift, Meeting abstract (Refereegranskat) Published
Abstract [en]

The reliability of modelling and simulation of energy systems strongly depends on the prediction accuracy of each system component. This is the case of Stirling engine-based systems, where an accurate modelling of the engine performance is very important to understand the overall system behaviour. In this sense, many Stirling engine analyses with different approaches have been already developed. However, there is a lack of Stirling engine models suitable for the integration into overall system simulations. In this context, this paper aims to develop a rigorous Stirling engine model that could be easily integrated into combined heat and power schemes for the overall techno-economic analysis of these systems. The model developed considers a Stirling engine with adiabatic working spaces, isothermal heat exchangers, dead volumes, and imperfect regeneration. Additionally, it considers mechanical pumping losses due to friction, limited heat transfer and thermal losses on the heat exchangers. The predicted efficiency and power output were compared with the numerical model and the experimental work reported by the NASA Lewis Research Centre for the GPU-3 Stirling engine. This showed average absolute errors around ±4% for the brake power, and ±5% for the brake efficiency at different frequencies. However, the model also showed large errors (±15%) for these calculations at higher frequencies and low pressures. Additional results include the calculation of the cyclic expansion and compression work; the pressure drop and heat flow through the heat exchangers; the conductive, shuttle effect and regenerator thermal losses; the temperature and mass flow distribution along the system; and the power output and efficiency of the engine.

Ort, förlag, år, upplaga, sidor
Elsevier, 2014. Vol. 73, nr 1, s. 203-219
Nyckelord [en]
Stirling engine; simulation; thermodynamics;CHP;
Nationell ämneskategori
Energiteknik
Forskningsämne
Energiteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-150576DOI: 10.1016/j.applthermaleng.2014.07.050ISI: 000346543400021Scopus ID: 2-s2.0-84906080788OAI: oai:DiVA.org:kth-150576DiVA, id: diva2:744120
Projekt
Micro-Scale Biomass Polygeneration
Forskningsfinansiär
Sida - Styrelsen för internationellt utvecklingssamarbete
Anmärkning

QC 20140912

Tillgänglig från: 2014-09-06 Skapad: 2014-09-06 Senast uppdaterad: 2017-12-05Bibliografiskt granskad
Ingår i avhandling
1. Thermodynamic analysis of Stirling engine systems: Applications for combined heat and power
Öppna denna publikation i ny flik eller fönster >>Thermodynamic analysis of Stirling engine systems: Applications for combined heat and power
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Increasing energy demands and environmental problems require innovative systems for electrical and thermal energy production. In this scenario, the development of small scale energy systems has become an interesting alternative to the conventional large scale centralized plants. Among these alternatives, small scale combined heat and power (CHP) plants based on Stirling Engines (SE) have attracted the interest among research and industry due to the potential advantages that offers. These include low maintenance, low noise during operation, a theoretically high electrical efficiency, and principally the fuel flexibility that the system offers. However, actual engine performances present very low electrical efficiencies and consequently few successful prototypes reached commercial maturity at elevated costs.Considering this situation, this thesis presents a numerical thermodynamic study for micro scale CHP-SE systems. The study is divided in two parts: The first part covers the engine analysis; and the second part studies the thermodynamic performance of the overall CHP-SE system. For the engine analysis a detailed thermodynamic model suitable for the simulation of different engine configurations was developed. The model capability to predict the engine performance was validated with experimental data obtained from two different engines: The GPU-3 Stirling engine studied by Lewis Research Centre; and the Genoa engine studied on the experimental rig built at the Energy Department at the Royal Institute of Technology (KTH). The second part of the research complemented the study with the analysis of the overall CHP-SE system. This included numerical simulations of the different CHP components and the sensitivity analysis for selected design parameters.The complete study permitted to assess the different operational and design configurations for the engine and the CHP components. These improvements could be implemented for test field evaluations and thus foster the development of more efficient SE-CHP systems. In addition, the detailed thermodynamic-design methodology for the SE-CHP systems was established and the numerical tool for the design assessment was developed.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2015. s. xx, 93
Serie
TRITA-KRV, ISSN 1100-7990 ; 15:02
Nyckelord
Stirling engine; Thermodynamic analysis
Nationell ämneskategori
Teknik och teknologier Energiteknik
Forskningsämne
Energiteknik
Identifikatorer
urn:nbn:se:kth:diva-163048 (URN)978-91-7595-498-1 (ISBN)
Disputation
2015-04-13, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Sida - Styrelsen för internationellt utvecklingssamarbete
Anmärkning

QC 20150327

Tillgänglig från: 2015-03-27 Skapad: 2015-03-26 Senast uppdaterad: 2015-03-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopusSciencedirect

Personposter BETA

Araoz, Joseph AdhemarSalomon, Marianne

Sök vidare i DiVA

Av författaren/redaktören
Araoz, Joseph AdhemarSalomon, MarianneFransson, Torsten
Av organisationen
Kraft- och värmeteknologi
I samma tidskrift
Applied Thermal Engineering
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 697 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf