Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A global structural em algorithm for a model of cancer progression
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsbiologi, CB. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Centra, Science for Life Laboratory, SciLifeLab.
2011 (engelsk)Inngår i: Adv. Neural Inf. Process. Syst.: Annu. Conf. Neural Inf. Process. Syst., NIPS, 2011Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Cancer has complex patterns of progression that include converging as well as diverging progressional pathways. Vogelstein's path model of colon cancer was a pioneering contribution to cancer research. Since then, several attempts have been made at obtaining mathematical models of cancer progression, devising learning algorithms, and applying these to cross-sectional data. Beerenwinkel et al. provided, what they coined, EM-like algorithms for Oncogenetic Trees (OTs) and mixtures of such. Given the small size of current and future data sets, it is important to minimize the number of parameters of a model. For this reason, we too focus on tree-based models and introduce Hidden-variable Oncogenetic Trees (HOTs). In contrast to OTs, HOTs allow for errors in the data and thereby provide more realistic modeling. We also design global structural EM algorithms for learning HOTs and mixtures of HOTs (HOT-mixtures). The algorithms are global in the sense that, during the M-step, they find a structure that yields a global maximum of the expected complete log-likelihood rather than merely one that improves it. The algorithm for single HOTs performs very well on reasonable-sized data sets, while that for HOT-mixtures requires data sets of sizes obtainable only with tomorrow's more cost-efficient technologies.

sted, utgiver, år, opplag, sider
2011.
Serie
Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
Emneord [en]
Cancer progression, Cancer research, Colon cancer, Complex pattern, Cost-efficient, Data sets, EM algorithms, Global maximum, Log likelihood, Path models, Realistic modeling, Tree-based model, Forestry, Learning algorithms, Mathematical models, Maximum likelihood, Mixtures, Diseases, Algorithms
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-150611Scopus ID: 2-s2.0-84860609411ISBN: 9781618395993 (tryckt)OAI: oai:DiVA.org:kth-150611DiVA, id: diva2:744842
Konferanse
25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011, 12 December 2011 through 14 December 2011, Granada
Forskningsfinansiär
Swedish e‐Science Research CenterScience for Life Laboratory - a national resource center for high-throughput molecular bioscience
Merknad

QC 20140908

Tilgjengelig fra: 2014-09-08 Laget: 2014-09-08 Sist oppdatert: 2014-09-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Søk i DiVA

Av forfatter/redaktør
Lagergren, Jens
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 105 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf