Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Limits to the efficiency of quantum lithography
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Kvantelektronik och -optik, QEO.ORCID-id: 0000-0002-2082-9583
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Kvantelektronik och -optik, QEO.
2011 (engelsk)Inngår i: Conf. Lasers Electro-Opt. Europe Eur. Quantum Electron. Conf., CLEO EUROPE/EQEC, 2011, s. 5943416-Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Quantum lithography promises, in principle, unlimited feature resolution, independent of wavelength. The price to be paid is that the lithographic film must consist of a multi-photon absorbing material. If N photons are absorbed, the minimum feature resolution goes from roughly /2 to /2N. However, there has been a discussion in the literature as to what is the probability of N photons in a lithographic exposure field to hit the same detector pixel, thereby enabling the needed N-photon absorption. On one hand it has been claimed that If the optical system is aligned properly, the probability of the first photon arriving in a small absorptive volume of space time is proportional to [the field intensity]. However, the remaining N-1 photons are constrained to arrive at the same place at the same time [1]. On the other hand it has been argued that it is not true that the first arriving photon greatly constrains the arrival location of the following ones Very few photons will be absorbed in one point since they typically arrive far apart. [2]. The answer to this dispute dictate very much the practical feasibility of quantum lithography, because if the few photons in the entangled state are spread out over the exposed area, the probability will quickly become negligible that they arrive at the same spot (causing a N-photon detection event). This will render quantum lithography very inefficient, albeit still feasible in principle.

sted, utgiver, år, opplag, sider
2011. s. 5943416-
Serie
2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011
Emneord [en]
Absorbing materials, Entangled state, Feature resolution, Field intensity, Multiphotons, Quantum lithography, Space time, Electron optics, Light, Lithography, Multiphoton processes, Optical systems, Optics, Photons, Probability, Quantum electronics, Quantum entanglement
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-151142DOI: 10.1109/CLEOE.2011.5943416Scopus ID: 2-s2.0-80052286143ISBN: 9781457705335 (tryckt)OAI: oai:DiVA.org:kth-151142DiVA, id: diva2:747348
Konferanse
2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011, 22-26 May 2011, Munich, Germany
Merknad

QC 20140916

Tilgjengelig fra: 2014-09-16 Laget: 2014-09-15 Sist oppdatert: 2014-09-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Björk, Gunnar G.

Søk i DiVA

Av forfatter/redaktør
Björk, Gunnar G.Kothe, Christian
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 189 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf