Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Optimal Coordination of Q(P) Characteristics for PV Systems in Distribution Grids for Minimizing Reactive Power Consumption
KTH, Skolan för elektro- och systemteknik (EES), Elektriska energisystem.
KTH, Skolan för elektro- och systemteknik (EES), Elektriska energisystem.
KTH, Skolan för elektro- och systemteknik (EES), Elektriska energisystem.ORCID-id: 0000-0002-8189-2420
2014 (engelsk)Inngår i: AORC Technical Meeting 2014, 2014Konferansepaper, Publicerat paper (Fagfellevurdert)
sted, utgiver, år, opplag, sider
2014.
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-154580OAI: oai:DiVA.org:kth-154580DiVA, id: diva2:757932
Konferanse
AORC Technical meeting 2014, Japan
Merknad

NQC 20141029

Tilgjengelig fra: 2014-10-23 Laget: 2014-10-23 Sist oppdatert: 2014-10-29bibliografisk kontrollert
Inngår i avhandling
1. Large Scale Solar Power Integration in Distribution Grids: PV Modelling, Voltage Support and Aggregation Studies
Åpne denne publikasjonen i ny fane eller vindu >>Large Scale Solar Power Integration in Distribution Grids: PV Modelling, Voltage Support and Aggregation Studies
2014 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Long term supporting schemes for photovoltaic (PV) system installation have led to accommodating large numbers of PV systems within load pockets in distribution grids. High penetrations of PV systems can cause new technical challenges, such as voltage rise due to reverse power flow during light load and high PV generation conditions. Therefore, new strategies are required to address the associated challenges.

Moreover, due to these changes in distribution grids, a different response behavior of the distribution grid on the transmission side can be expected. Hence, a new equivalent model of distribution grids with high penetration of PV systems is needed to be addressed for future power system studies.

The thesis contributions lie in three parts. The first part of the thesis copes with the PV modelling. A non-proprietary PV model of a three-phase, single stage PV system is developed in PSCAD/EMTDC and PowerFactory. Three

different reactive power regulation strategies are incorporated into the models and their behavior are investigated in both simulation platforms using a distribution system with PV systems.

In the second part of the thesis, the voltage rise problem is remedied by use of reactive power. On the other hand, considering large numbers of PV systems in grids, unnecessary reactive power consumption by PV systems first increases total line losses, and second it may also jeopardize the stability of the network in the case of contingencies in conventional power plants, which supply reactive power. Thus, this thesis investigates and develops the novel schemes to reduce reactive power flows while still keeping voltage within designated limits via three different approaches:

  1. decentralized voltage control to the pre-defined set-points
  2. developing a coordinated active power dependent (APD) voltage regulation Q(P)using local signals
  3. developing a multi-objective coordinated droop-based voltage (DBV) regulation Q(V) using local signals

 

In the third part of the thesis, furthermore, a gray-box load modeling is used to develop a new static equivalent model of a complex distribution grid with large numbers of PV systems embedded with voltage support schemes. In the proposed model, variations of voltage at the connection point simulate variations of the model’s active and reactive power. This model can simply be integrated intoload-flow programs and replace the complex distribution grid, while still keepingthe overall accuracy high.

The thesis results, in conclusion, demonstrate: i) using rms-based simulations in PowerFactory can provide us with quite similar results using the time domain instantaneous values in PSCAD platform; ii) decentralized voltage control to specific set-points through the PV systems in the distribution grid is fundamentally impossible dueto the high level voltage control interaction and directionality among the PV systems; iii) the proposed APD method can regulate the voltage under the steady-state voltagelimit and consume less total reactive power in contrast to the standard characteristicCosφ(P)proposed by German Grid Codes; iv) the proposed optimized DBV method can directly address voltage and successfully regulate it to the upper steady-state voltage limit by causing minimum reactive power consumption as well as line losses; v) it is beneficial to address PV systems as a separate entity in the equivalencing of distribution grids with high density of PV systems.

 

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2014. s. 72
Serie
TRITA-EE, ISSN 1653-5146 ; 2014:050
Emneord
Photovoltaic systems, PV system modelling, reactive power control, droop control, voltage sensitivity analysis, German Grid Codes, relative gain array (RGA), singular value decomposition (SVD), load modeling, system identification
HSV kategori
Forskningsprogram
Elektro- och systemteknik
Identifikatorer
urn:nbn:se:kth:diva-154602 (URN)978-91-7595-303-8 (ISBN)
Disputas
2014-11-13, F3, Lindstedtsvägen 26 (02 tr), KTH, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad

The Doctoral Degrees issued upon completion of the programme are issued by Comillas Pontifical University, Delft University of Technology and KTH Royal Institute of Technology. The invested degrees are official in Spain, the Netherlands and Sweden, respectively. QC 20141028

Tilgjengelig fra: 2014-10-28 Laget: 2014-10-24 Sist oppdatert: 2014-10-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Söder, Lennart

Søk i DiVA

Av forfatter/redaktør
Samadi, AfshinShayesteh, EbrahimSöder, Lennart
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 233 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf