Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Immobilization of a molecular catalyst on carbon nanotubes for highly efficient electro-catalytic water oxidation
KTH, Skolan för kemivetenskap (CHE), Kemi.ORCID-id: 0000-0003-3455-0855
KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
KTH, Skolan för kemivetenskap (CHE), Kemi.
Vise andre og tillknytning
2014 (engelsk)Inngår i: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 50, nr 90, s. 13948-13951Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Electrochemically driven water oxidation has been performed using a molecular water oxidation catalyst immobilized on hybrid carbon nanotubes and nano-material electrodes. A high turnover frequency (TOF) of 7.6 s(-1) together with a high catalytic current density of 2.2 mA cm(-2) was successfully obtained at an overpotential of 480 mV after 1 h of bulk electrolysis.

sted, utgiver, år, opplag, sider
2014. Vol. 50, nr 90, s. 13948-13951
Emneord [en]
multi walled nanotube, ruthenium, water
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-157248DOI: 10.1039/c4cc06959eISI: 000343985600019PubMedID: 25265253Scopus ID: 2-s2.0-84907998300OAI: oai:DiVA.org:kth-157248DiVA, id: diva2:769565
Merknad

QC 20141208

Tilgjengelig fra: 2014-12-08 Laget: 2014-12-08 Sist oppdatert: 2017-12-05bibliografisk kontrollert
Inngår i avhandling
1. Design of Water Splitting Devices via Molecular Engineering
Åpne denne publikasjonen i ny fane eller vindu >>Design of Water Splitting Devices via Molecular Engineering
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Converting solar energyto fuels such as hydrogen by the reaction of water splitting is a promising solution for the future sustainable energy systems. The theme of this thesis is to design water splitting devices via molecular engineering; it concerns the studies of both electrochemical-driven and photo-electrochemical driven molecular functional devices for water splitting.

The first chapter presents a general introduction about Solar Fuel Conversion. It concerns molecular water splitting catalysts, light harvesting materials and fabrication methods of water splitting devices.

The second chapter describes an electrode by immobilizing a molecular water oxidation catalyston carbon nanotubes through the hydrophobic interaction. This fabrication method is corresponding to the question: “How to employ catalysts in functional devices without affecting their performances?”

In the third chapter, molecular water oxidation catalysts were successfully immobilized on glassy carbon electrode surface via electrochemical polymerization method. The O-O bond formation pathways of catalysts on electrode surfaces were studied. This kinetic studyis corresponding to the question: “How to get kinetic information of RDS whena catalyst is immobilized on the electrode surface?”

Chapter four explores molecular water oxidation catalysts immobilized on dye-sensitized TiO2 electrodeand Fe2O3 semiconductor electrode via different fabrication methods. The reasons of photocurrent decay are discussed and two potential solutions are provided. These studies are corresponding to the question: “How to improvethe stability of photo-electrodes?”

Finally, in the last chapter, two novel Pt-free Z-schemed molecular photo-electrochemical cells with both photoactive cathode and photoactive anode for visible light driven water splitting driven were demonstrated. These studies are corresponding to the question: “How to utilizethe concept of Z-schemein photosynthesis to fabricate Pt-free molecular based PEC cells?

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2016. s. 92
Serie
TRITA-CHE-Report, ISSN 1654-1081 ; 2016:6
Emneord
electrochemical-driven water splitting, artificial photosynthesis, molecular catalysts
HSV kategori
Forskningsprogram
Kemi
Identifikatorer
urn:nbn:se:kth:diva-181107 (URN)978-91-7595-841-5 (ISBN)
Disputas
2016-02-26, F3, Lindstedtsvägen 26, KTH, Stockholm., 10:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Swedish Energy AgencySwedish Research CouncilKnut and Alice Wallenberg Foundation
Merknad

QC 20160129

Tilgjengelig fra: 2016-01-29 Laget: 2016-01-29 Sist oppdatert: 2017-06-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Li, FushengSun, Licheng

Søk i DiVA

Av forfatter/redaktør
Li, FushengLi, LinTong, LianpengDaniel, QuentinGöthelid, MatsSun, Licheng
Av organisasjonen
I samme tidsskrift
Chemical Communications

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 122 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf