Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Immobilization of a molecular catalyst on carbon nanotubes for highly efficient electro-catalytic water oxidation
KTH, Skolan för kemivetenskap (CHE), Kemi.ORCID-id: 0000-0003-3455-0855
KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
KTH, Skolan för kemivetenskap (CHE), Kemi.
Visa övriga samt affilieringar
2014 (Engelska)Ingår i: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 50, nr 90, s. 13948-13951Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Electrochemically driven water oxidation has been performed using a molecular water oxidation catalyst immobilized on hybrid carbon nanotubes and nano-material electrodes. A high turnover frequency (TOF) of 7.6 s(-1) together with a high catalytic current density of 2.2 mA cm(-2) was successfully obtained at an overpotential of 480 mV after 1 h of bulk electrolysis.

Ort, förlag, år, upplaga, sidor
2014. Vol. 50, nr 90, s. 13948-13951
Nyckelord [en]
multi walled nanotube, ruthenium, water
Nationell ämneskategori
Kemi
Identifikatorer
URN: urn:nbn:se:kth:diva-157248DOI: 10.1039/c4cc06959eISI: 000343985600019PubMedID: 25265253Scopus ID: 2-s2.0-84907998300OAI: oai:DiVA.org:kth-157248DiVA, id: diva2:769565
Anmärkning

QC 20141208

Tillgänglig från: 2014-12-08 Skapad: 2014-12-08 Senast uppdaterad: 2017-12-05Bibliografiskt granskad
Ingår i avhandling
1. Design of Water Splitting Devices via Molecular Engineering
Öppna denna publikation i ny flik eller fönster >>Design of Water Splitting Devices via Molecular Engineering
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Converting solar energyto fuels such as hydrogen by the reaction of water splitting is a promising solution for the future sustainable energy systems. The theme of this thesis is to design water splitting devices via molecular engineering; it concerns the studies of both electrochemical-driven and photo-electrochemical driven molecular functional devices for water splitting.

The first chapter presents a general introduction about Solar Fuel Conversion. It concerns molecular water splitting catalysts, light harvesting materials and fabrication methods of water splitting devices.

The second chapter describes an electrode by immobilizing a molecular water oxidation catalyston carbon nanotubes through the hydrophobic interaction. This fabrication method is corresponding to the question: “How to employ catalysts in functional devices without affecting their performances?”

In the third chapter, molecular water oxidation catalysts were successfully immobilized on glassy carbon electrode surface via electrochemical polymerization method. The O-O bond formation pathways of catalysts on electrode surfaces were studied. This kinetic studyis corresponding to the question: “How to get kinetic information of RDS whena catalyst is immobilized on the electrode surface?”

Chapter four explores molecular water oxidation catalysts immobilized on dye-sensitized TiO2 electrodeand Fe2O3 semiconductor electrode via different fabrication methods. The reasons of photocurrent decay are discussed and two potential solutions are provided. These studies are corresponding to the question: “How to improvethe stability of photo-electrodes?”

Finally, in the last chapter, two novel Pt-free Z-schemed molecular photo-electrochemical cells with both photoactive cathode and photoactive anode for visible light driven water splitting driven were demonstrated. These studies are corresponding to the question: “How to utilizethe concept of Z-schemein photosynthesis to fabricate Pt-free molecular based PEC cells?

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2016. s. 92
Serie
TRITA-CHE-Report, ISSN 1654-1081 ; 2016:6
Nyckelord
electrochemical-driven water splitting, artificial photosynthesis, molecular catalysts
Nationell ämneskategori
Annan kemi
Forskningsämne
Kemi
Identifikatorer
urn:nbn:se:kth:diva-181107 (URN)978-91-7595-841-5 (ISBN)
Disputation
2016-02-26, F3, Lindstedtsvägen 26, KTH, Stockholm., 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
EnergimyndighetenVetenskapsrådetKnut och Alice Wallenbergs Stiftelse
Anmärkning

QC 20160129

Tillgänglig från: 2016-01-29 Skapad: 2016-01-29 Senast uppdaterad: 2017-06-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Li, FushengSun, Licheng

Sök vidare i DiVA

Av författaren/redaktören
Li, FushengLi, LinTong, LianpengDaniel, QuentinGöthelid, MatsSun, Licheng
Av organisationen
KemiOrganisk kemiMaterialfysik, MFMolekylär elektronik, CMD
I samma tidskrift
Chemical Communications
Kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 122 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf