Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimation of vocal duration in monaural mixtures
KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH.ORCID-id: 0000-0002-4957-2128
KTH.
KTH.
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.ORCID-id: 0000-0001-5723-9571
Vise andre og tillknytning
2014 (engelsk)Inngår i: Proceedings - 40th International Computer Music Conference, ICMC 2014 and 11th Sound and Music Computing Conference, SMC 2014 - Music Technology Meets Philosophy: From Digital Echos to Virtual Ethos, National and Kapodistrian University of Athens , 2014, s. 1172-1177Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In this study, the task of vocal duration estimation in monaural music mixtures is explored. We show how presently available algorithms for source separation and predominant f0 estimation can be used as a front end from which features can be extracted. A large set of features is presented, devised to connect different vocal cues to the presence of vocals. Two main cues are utilized; the voice is neither stable in pitch nor in timbre. We evaluate the performance of the model by estimating the length of the vocal regions of the mixtures. To facilitate this, a new set of annotations to a widely adopted data set is developed and made available to the community. The proposed model is able to explain about 78 % of the variance in vocal region length. In a classification task, where the excerpts are classified as either vocal or non-vocal, the model has an accuracy of about 0.94.

sted, utgiver, år, opplag, sider
National and Kapodistrian University of Athens , 2014. s. 1172-1177
Emneord [en]
Algorithms, Computer music, Mixtures, Classification tasks, Data set, F0 estimations, Front end
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-157969Scopus ID: 2-s2.0-84908895278ISBN: 978-960466137-4 (tryckt)OAI: oai:DiVA.org:kth-157969DiVA, id: diva2:774125
Konferanse
40th International Computer Music Conference, ICMC 2014, Joint with the 11th Sound and Music Computing Conference, SMC 2014 - Music Technology Meets Philosophy: From Digital Echos to Virtual Ethos, 14 September 2014 through 20 September 2014, Athens, Greece
Merknad

QC 20141222

Tilgjengelig fra: 2014-12-22 Laget: 2014-12-18 Sist oppdatert: 2014-12-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Personposter BETA

Zea, ElíasFriberg, Anders

Søk i DiVA

Av forfatter/redaktør
Elowsson, AndersSchön, RagnarHöglund, MattsZea, ElíasFriberg, Anders
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 118 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf