Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Quantum Mechanics/Molecular Mechanics Modeling of Photoelectron Spectra: The Carbon 1s Core-Electron Binding Energies of Ethanol-Water Solutions
KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi. University of Oulu, Finland.
KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.ORCID-id: 0000-0002-9123-8174
Vise andre og tillknytning
2014 (engelsk)Inngår i: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 118, nr 46, s. 13217-13225Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Using ethanolwater solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solutesolvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics modelelectrostatic, polarization, and van der Waalswith atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

sted, utgiver, år, opplag, sider
2014. Vol. 118, nr 46, s. 13217-13225
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-158401DOI: 10.1021/jp506410wISI: 000345468600021Scopus ID: 2-s2.0-84912530091OAI: oai:DiVA.org:kth-158401DiVA, id: diva2:778135
Merknad

QC 20150109

Tilgjengelig fra: 2015-01-09 Laget: 2015-01-07 Sist oppdatert: 2018-04-27bibliografisk kontrollert
Inngår i avhandling
1. Quantum and quantum-classical calculations of core-ionized molecules in varied environments
Åpne denne publikasjonen i ny fane eller vindu >>Quantum and quantum-classical calculations of core-ionized molecules in varied environments
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Computational quantum chemistry methods have been applied in two particular cases: to provide insight to photoionization induced fragmentation of HgBr2 and HgCl2 molecules, and to study core-electron binding energies and chemical shifts of molecules in liquid, surface adsorbed and polymeric environments in the framework of quantum mechanics/molecular mechanics (QM/MM). In the photodissociation studies the computational work is based on the relativistic Dirac equation as the systems present strong spin-orbit interaction affecting the fragmentation processes. In the QM/MM studies of ethanol-water mixtures and molecules physisorbed on silver surfaces the structures are provided by classical molecular dynamics simulations to analyze the distribution of the binding energies of core-orbitals and effects of their surroundings. In the case of polymethyl methacrylate polymer the impact of a QM-MM boundary and a polymeric environment are studied. The theoretical backgrounds of the computational methods applied and the obtained results are discussed.

sted, utgiver, år, opplag, sider
KTH Royal Institute of Technology, 2018. s. 77
Serie
TRITA-CBH-FOU ; 2018:20
Emneord
Electron spectroscopy, UPS, XPS, photodissociation, binding energy, ionization potential, computational, electronic structure, self-consistent field, DFT, QM/MM, gas phase, liquid, solution, physisorption, metallic surface, polymer, charge transfer
HSV kategori
Forskningsprogram
Teoretisk kemi och biologi
Identifikatorer
urn:nbn:se:kth:diva-226919 (URN)978-952-62-1882-3 (ISBN)978-952-62-1883-0 (ISBN)
Disputas
2018-06-01, IT116, Univesity of Oulu, Pentti Kaiteran katu 1, 90014 Oulu, Finland, Oulu, 12:00 (engelsk)
Opponent
Veileder
Merknad

This thesis is for a double degree PhD done in KTH Royal institute of Technology and University of Oulu.

QC 20180502

Tilgjengelig fra: 2018-05-02 Laget: 2018-04-27 Sist oppdatert: 2018-05-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Vahtras, OlavÅgren, Hans

Søk i DiVA

Av forfatter/redaktør
Löytynoja, TuomasVahtras, OlavRinkevicius, ZilvinasÅgren, Hans
Av organisasjonen
I samme tidsskrift
Journal of Physical Chemistry B

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 86 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf