Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Measurements of Hub Flow Interaction on Film Cooled Nozzle Guide Vane in Transonic Annular Cascade
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.ORCID-id: 0000-0001-5162-2289
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.ORCID-id: 0000-0002-1033-9601
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
2015 (engelsk)Inngår i: Journal of turbomachinery, ISSN 0889-504X, E-ISSN 1528-8900, Vol. 137, nr 8, artikkel-id 081004Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

An experimental study has been performed in a transonic annular sector cascade of nozzle guide vanes (NGVs) to investigate the aerodynamic performance and the interaction between hub film cooling and mainstream flow. The focus of the study is on the endwalls, specifically the interaction between the hub film cooling and the mainstream. Carbon dioxide (CO2) has been supplied to the coolant holes to serve as tracer gas. Measurements of CO2 concentration downstream of the vane trailing edge (TE) can be used to visualize the mixing of the coolant flow with the mainstream. Flow field measurements are performed in the downstream plane with a five-hole probe to characterize the aerodynamics in the vane. Results are presented for the fully cooled and partially cooled vane (only hub cooling) configurations. Data presented at the downstream plane include concentration contour, axial vorticity, velocity vectors, and yaw and pitch angles. From these investigations, secondary flow structures such as the horseshoe vortex, passage vortex, can be identified and show the cooling flow significantly impacts the secondary flow and downstream flow field. The results suggest that there is a region on the pressure side (PS) of the vane TE where the coolant concentrations are very low suggesting that the cooling air introduced at the platform upstream of the leading edge (LE) does not reach the PS endwall, potentially creating a local hotspot.

sted, utgiver, år, opplag, sider
2015. Vol. 137, nr 8, artikkel-id 081004
HSV kategori
Forskningsprogram
Flyg- och rymdteknik; Energiteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-159584DOI: 10.1115/1.4029242ISI: 000356835400004Scopus ID: 2-s2.0-84937040916OAI: oai:DiVA.org:kth-159584DiVA, id: diva2:786088
Merknad

QC 20150224

Tilgjengelig fra: 2015-02-04 Laget: 2015-02-04 Sist oppdatert: 2023-03-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Saha, RanjanFridh, JensFransson, Torsten

Søk i DiVA

Av forfatter/redaktør
Saha, RanjanFridh, JensFransson, Torsten
Av organisasjonen
I samme tidsskrift
Journal of turbomachinery

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 218 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf