Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Statistical investigation of Kelvin-Helmholtz waves at the magnetopause of Mercury
KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.ORCID-id: 0000-0002-9164-0761
KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.ORCID-id: 0000-0003-1270-1616
KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.ORCID-id: 0000-0002-0349-0645
2014 (Engelska)Ingår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 119, nr 12, s. 9670-9683Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A large study of Kelvin-Helmholtz (KH) waves at the magnetopause of Mercury covering 907 days of data from the MErcury Surface Space ENvironment GEochemistry Ranging spacecraft have resulted in 146 encounters of not only nonlinear KH waves but also linear surface waves, including the first observations of KH waves at the dawnside magnetopause. Most of the waves are in the nonlinear phase (90%) occur at the duskside magnetopause (93%), under northward magnetosheath magnetic field conditions (89%) and during greater magnetosheath Bz (23 nT) values than in general. The average period and amplitude is 30 ± 14 s and 14 ± 10 nT, respectively. Unlike duskside events, dawnside waves do not appear at the magnetopause flank (<6 magnetic local time). This is in agreement with previous observations and modeling results and possibly explained by finite Larmor radius effects and/or a lack of a large-scale laminar flow at the dawnside magnetopause boundary. Key Points Observing Kelvin-Helmholtz waves at the dawnside Mercury magnetopause Confirming a dawn-dusk asymmetry associated with the Kelvin-Helmholtz at Mercury Determine characteristics associated with Kelvin-Helmholtz waves

Ort, förlag, år, upplaga, sidor
2014. Vol. 119, nr 12, s. 9670-9683
Nyckelord [en]
Kelvin-Helmholtz, magnetopause, MESSENGER
Nationell ämneskategori
Fysik
Identifikatorer
URN: urn:nbn:se:kth:diva-161507DOI: 10.1002/2014JA020614ISI: 000349161100025Scopus ID: 2-s2.0-84921760749OAI: oai:DiVA.org:kth-161507DiVA, id: diva2:794884
Forskningsfinansiär
Rymdstyrelsen
Anmärkning

QC 20150313

Tillgänglig från: 2015-03-13 Skapad: 2015-03-12 Senast uppdaterad: 2017-12-04Bibliografiskt granskad
Ingår i avhandling
1. Structures and Processes at the Mercury Magnetopause
Öppna denna publikation i ny flik eller fönster >>Structures and Processes at the Mercury Magnetopause
2015 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The mechanism involved in the transfer of energy, momentum and plasma from the solar wind to any planetary magnetosphere is considered one of the more important topics in space plasma physics. With the use of the Mercury spacecraft MESSENGER’s (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) data, it has been possible to study these processes in an environment different, yet similar, to Earth’s. These data have resulted in unprecedented investigations advancing not only the extraterrestrial space plasma research, but also the general space physics field.

This work aims to investigate the Kelvin-Helmholtz (KH) instability at Mercury’s magnetopause, which is believed to be one of the main drivers for the transfer of matter and energy into Earth’s magnetosphere, and the low- latitude boundary layer (LLBL) which is in direct connection to the magnetopause. The studies use data from MESSENGER’s magnetometer (MAG) and fast imaging plasma spectrometer (FIPS) instruments during the first three years in orbit. Results show that KH waves are observed almost exclusively on the duskside magnetopause, something that has not been observed at Earth. In contrast, the LLBL shows an opposite asymmetry as it occurs more often on the dawnside. Both the KH instability and the LLBL are observed mainly during northward interplanetary magnetic field. This, together with the distinct opposite asymmetry, suggests that the KH instability and LLBL are somehow connected. Previous theoretical studies, simulations and observations have shown or indicated that the sodium ions have a large impact on the Hermean magnetospheric environment, including the boundary layer where the KH instability arises. One possibility is that the sodium ions also induce the observed dawn-dusk asymmetry in the LLBL. Another explanation could be that the LLBL on its own influences the KH wave occurrence by reducing the KH wave growth rates on the dawnside where most of the LLBLs are observed. Furthermore, observations agree with some formation mechanisms that should give rise to the observed dawn-dusk LLBL asymmetry.

The processes responsible for the dawn-dusk occurrence asymmetry in both the KH instability and the LLBL are yet to be confirmed. Future work may also include determination of the contribution of KH waves to the energy and plasma transfer from the solar wind to the Hermean magnetosphere.

 

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2015. s. xi, 32
Serie
TRITA-EE, ISSN 1653-5146 ; 2015:53
Nationell ämneskategori
Fusion, plasma och rymdfysik
Identifikatorer
urn:nbn:se:kth:diva-174306 (URN)978-91-7595-681-7 (ISBN)
Presentation
2015-10-21, Alfvén lab’s seminar room, Teknikringen 31, KTH, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Rymdstyrelsen, 566176
Anmärkning

QC 20151005

Tillgänglig från: 2015-10-05 Skapad: 2015-10-02 Senast uppdaterad: 2015-10-05Bibliografiskt granskad
2. Structures and processes in the Mercury magnetosphere
Öppna denna publikation i ny flik eller fönster >>Structures and processes in the Mercury magnetosphere
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The mechanisms involved in the transfer of mass and energy from the solar wind to any planetary magnetosphere is considered an important topic in space physics. With the use of the Mercury spacecraft MESSENGER's data, it has been possible to study these processes in an environment different, yet similar, to Earth's. These data have resulted in new knowledge advancing not only the extraterrestrial space plasma research, but also the general space physics field.

 

This thesis aims to investigate mechanisms for the transfer of mass and energy into Mercury’s magnetosphere, and magnetospheric regions affected by, and processes directly driven by, these. The work includes the Kelvin-Helmholtz instability (KHI) at the magnetopause, which is one of the main drivers for mass and energy transfer on Earth, the low-latitude boundary layer (LLBL), which is in direct connection to the magnetopause and proposed to be affected by the KHI, magnetospheric ultra-low frequency (ULF) waves driven by the KHI, and isolated magnetic field structures in the magnetosheath as possible analogues to the Earth magnetosheath plasmoids and jets.

 

Kelvin-Helmholtz waves (KHW) and the LLBL are identified and characterized. The KHWs are observed almost exclusively on the duskside magnetopause, something that has not been observed on Earth. In contrast, the LLBL shows an opposite asymmetry. Results suggest that the KHI and LLBL are connected, possibly by the LLBL creating the asymmetry observed for the KHWs.

 

Isolated changes of the total magnetic field strength in the magnetosheath are identified. The similar properties of the solar wind and magnetosheath negative magnetic field structures suggest that they are analogues to diamagnetic plasmoids found on Earth. No clear analogues to paramagnetic plasmoids are found.  

 

Distinct magnetospheric ULF wave signatures are detected frequently in close connection to KHWs. Results from the polarization analysis on the dayside ULF waves indicate that the majority of these are most probably driven by the KHI. In general, likely KHI driven ULF waves are observed frequently in the Hermean magnetosphere. 

Although similar in many aspects, Mercury and Earth show fundamental differences in processes and structures, making Mercury a highly interesting planet to study to increase our knowledge of Earth-like planets.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2017. s. 53
Serie
TRITA-EE, ISSN 1653-5146 ; 2017:029
Nyckelord
Mercury, MESSENGER, magnetosphere, processes, structures
Nationell ämneskategori
Fusion, plasma och rymdfysik
Forskningsämne
Elektro- och systemteknik
Identifikatorer
urn:nbn:se:kth:diva-207173 (URN)978-91-7729-349-1 (ISBN)
Disputation
2017-06-15, Kollegiesalen, Brinellvägen 8, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Rymdstyrelsen, 122/11
Anmärkning

QC 20170519

Tillgänglig från: 2017-05-19 Skapad: 2017-05-18 Senast uppdaterad: 2017-05-19Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Liljeblad, ElisabetKarlsson, TomasKullen, Anita

Sök vidare i DiVA

Av författaren/redaktören
Liljeblad, ElisabetKarlsson, TomasKullen, Anita
Av organisationen
Rymd- och plasmafysik
I samma tidskrift
Journal of Geophysical Research - Space Physics
Fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 102 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf