Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
From Generic to Specific Deep Representations for Visual Recognition
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. (Computer Vision)ORCID-id: 0000-0001-5211-6388
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.ORCID-id: 0000-0002-4266-6746
Vise andre og tillknytning
2015 (engelsk)Inngår i: Proceedings of CVPR 2015, IEEE conference proceedings, 2015Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Evidence is mounting that ConvNets are the best representation learning method for recognition. In the common scenario, a ConvNet is trained on a large labeled dataset and the feed-forward units activation, at a certain layer of the network, is used as a generic representation of an input image. Recent studies have shown this form of representation to be astoundingly effective for a wide range of recognition tasks. This paper thoroughly investigates the transferability of such representations w.r.t. several factors. It includes parameters for training the network such as its architecture and parameters of feature extraction. We further show that different visual recognition tasks can be categorically ordered based on their distance from the source task. We then show interesting results indicating a clear correlation between the performance of tasks and their distance from the source task conditioned on proposed factors. Furthermore, by optimizing these factors, we achieve stateof-the-art performances on 16 visual recognition tasks.

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2015.
Serie
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, ISSN 2160-7508
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-164527DOI: 10.1109/CVPRW.2015.7301270ISI: 000378887900005Scopus ID: 2-s2.0-84951960494ISBN: 978-146736759-2 (tryckt)OAI: oai:DiVA.org:kth-164527DiVA, id: diva2:806070
Konferanse
CVPRW DeepVision Workshop,June 11, 2015, Boston, MA, USA
Merknad

QC 20150507

Tilgjengelig fra: 2015-04-17 Laget: 2015-04-17 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

fulltext(533 kB)272 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 533 kBChecksum SHA-512
32b0e8fa2ab69332df25dff56cb50748c3d0f0df16ebf081dc6f21547fa70ca024a0975c4f8616ff6d13ca951b6a0e3d645981c9f2720739abf97b4fdbd222e0
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopusConference website

Personposter BETA

Azizpour, HosseinMaki, Atsuto

Søk i DiVA

Av forfatter/redaktør
Azizpour, HosseinRazavian, Ali SharifSullivan, JosephineMaki, AtsutoCarlsson, Stefan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 272 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 632 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf