Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cohomological learning of periodic motion
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. AI Laboratory, Jožef Stefan Institute, Ljubljana, Slovenia .ORCID-id: 0000-0001-6322-7542
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.ORCID-id: 0000-0003-1114-6040
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.ORCID-id: 0000-0003-2965-2953
2015 (engelsk)Inngår i: Applicable Algebra in Engineering, Communication and Computing, ISSN 0938-1279, E-ISSN 1432-0622, Vol. 26, nr 1-2, s. 5-26Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This work develops a novel framework which can automatically detect, parameterize and interpolate periodic motion patterns obtained from a motion capture sequence. Using our framework, periodic motions such as walking and running gaits or any motion sequence with periodic structure such as cleaning, dancing etc. can be detected automatically and without manual marking of the period start and end points. Our approach constructs an intrinsic parameterization of the motion and is computationally fast. Using this parameterization, we are able generate prototypical periodic motions. Additionally, we are able to interpolate between various motions, yielding a rich class of 'mixed' periodic actions. Our approach is based on ideas from applied algebraic topology. In particular, we apply a novel persistent cohomology based method for the first time in a graphics application which enables us to recover circular coordinates of motions. We also develop a suitable notion of homotopy which can be used to interpolate between periodic motion patterns. Our framework is directly applicable to the construction of walk cycles for animating character motions with motion graphs or state machine driven animation engines and processed our examples at an average speed of 11.78 frames per second.

sted, utgiver, år, opplag, sider
2015. Vol. 26, nr 1-2, s. 5-26
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-164460DOI: 10.1007/s00200-015-0251-xISI: 000351302200002Scopus ID: 2-s2.0-84924851783OAI: oai:DiVA.org:kth-164460DiVA, id: diva2:807046
Merknad

QC 20150422

Tilgjengelig fra: 2015-04-22 Laget: 2015-04-17 Sist oppdatert: 2017-12-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Vejdemo Johansson, MikaelPokorny, Florian T.Kragic, Danica

Søk i DiVA

Av forfatter/redaktør
Vejdemo Johansson, MikaelPokorny, Florian T.Kragic, Danica
Av organisasjonen
I samme tidsskrift
Applicable Algebra in Engineering, Communication and Computing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 113 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf