Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Modelling Moho depth in ocean areas based on satellite altimetry using Vening Meinesz–Moritz’ method
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geodesi och satellitpositionering.
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geodesi och satellitpositionering.
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geodesi och satellitpositionering.
2016 (engelsk)Inngår i: Acta Geodaetica et Geophysica Hungarica, ISSN 1217-8977, E-ISSN 1587-1037, Vol. 51, nr 2, s. 137-149Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

An experiment for estimating Moho depth is carried out based on satellite altimetryand topographic information using the Vening Meinesz–Moritz gravimetric isostatichypothesis. In order to investigate the possibility and quality of satellite altimetry in Mohodetermination, the DNSC08GRA global marine gravity field model and the DTM2006 globaltopography model are used to obtain a global Moho depth model over the oceans with aresolution of 1 x 1 degree. The numerical results show that the estimated Bouguer gravity disturbancevaries from 86 to 767 mGal, with a global average of 747 mGal, and the estimatedMoho depth varies from 3 to 39 km with a global average of 19 km. Comparing the Bouguergravity disturbance estimated from satellite altimetry and that derived by the gravimetricsatellite-only model GOGRA04S shows that the two models agree to 13 mGal in root meansquare (RMS). Similarly, the estimated Moho depths from satellite altimetry andGOGRA04S agree to 0.69 km in RMS. It is also concluded that possible mean dynamictopography in the marine gravity model does not significantly affect the Moho determination.

sted, utgiver, år, opplag, sider
Springer Netherlands, 2016. Vol. 51, nr 2, s. 137-149
Emneord [en]
Vening Meinesz–Moritz, Moho depth, Satellite altimetry, DNSC08GRA
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-166753DOI: 10.1007/s40328-015-0116-6ISI: 000375597500001Scopus ID: 2-s2.0-84971223284OAI: oai:DiVA.org:kth-166753DiVA, id: diva2:812071
Merknad

QC 20160609

Tilgjengelig fra: 2015-05-15 Laget: 2015-05-15 Sist oppdatert: 2017-12-04bibliografisk kontrollert
Inngår i avhandling
1. Recovering Moho parameters using gravimetric and seismic data
Åpne denne publikasjonen i ny fane eller vindu >>Recovering Moho parameters using gravimetric and seismic data
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Isostasy is a key concept in geoscience to interpret the state of mass balance between the Earth’s crust and mantle. There are four well-known isostatic models: the classical models of Airy/Heiskanen (A/H), Pratt/Hayford (P/H), and Vening Meinesz (VM) and the modern model of Vening Meinesz-Moritz (VMM). The first three models assume a local and regional isostatic compensation, whereas the latter one supposes a global isostatic compensation scheme.

A more satisfactory test of isostasy is to determine the Moho interface. The Moho discontinuity (or Moho) is the surface, which marks the boundary between the Earth’s crust and upper mantle. Generally, the Moho interface can be mapped accurately by seismic observations, but limited coverage of seismic data and economic considerations make gravimetric or combined gravimetric-seismic methods a more realistic technique for imaging the Moho interface either regional or global scales.

It is the main purpose of this dissertation to investigate an isostatic model with respect to its feasibility to use in recovering the Moho parameters (i.e. Moho depth and Moho density contrast). The study is mostly limited to the VMM model and to the combined approach on regional and global scales. The thesis briefly includes various investigations with the following specific subjects:

1) to investigate the applicability and quality of satellite altimetry data (i.e. marine gravity data) in Moho determination over the oceans using the VMM model, 2) to investigate the need for methodologies using gravimetric data jointly with seismic data (i.e. combined approach) to estimate both the Moho depth and Moho density contrast over regional and global scales, 3) to investigate the spherical terrain correction and its effect on the VMM Moho determination, 4) to investigate the residual isostatic topography (RIT, i.e. difference between actual topography and isostatic topography) and its effect in the VMM Moho estimation, 5) to investigate the application of the lithospheric thermal-pressure correction and its effect on the Moho geometry using the VMM model, 6) Finally, the thesis ends with the application of the classical isostatic models for predicting the geoid height.

The main input data used in the VMM model for a Moho recovery is the gravity anomaly/disturbance corrected for the gravitational contributions of mass density variation due in different layers of the Earth’s crust (i.e. stripping gravity corrections) and for the gravity contribution from deeper masses below the crust (i.e. non-isostatic effects). The corrections are computed using the recent seismic crustal model CRUST1.0.

Our numerical investigations presented in this thesis demonstrate that 1) the VMM approach is applicable for estimating Moho geometry using a global marine gravity field derived by satellite altimetry and that the possible mean dynamic topography in the marine gravity model does not significantly affect the Moho determination, 2) the combined approach could help in filling-in the gaps in the seismic models and it also provides good fit to other global and regional models more than 90 per cent of the locations, 3) despite the fact that the lateral variation of the crustal depth is rather smooth, the terrain affects the Moho result most significantly in many areas, 4) the application of the RIT correction improves the agreement of our Moho result with some published global Moho models, 5) the application of the lithospheric thermal-pressure correction improves the agreement of VMM Moho model with some other global Moho models, 6) the geoid height cannot be successfully represented by the classical models due to many other gravitational signals from various mass variations within the Earth that affects the geoid.  

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2016. s. xi, 56
Serie
TRITA-SOM, ISSN 1653-6126 ; 2016:02
Emneord
crust, gravity, mantle, Moho depth, non-isostatic effect, residual isostatic topography, stripping, thermal state, Vening Meinesz-Moritz model
HSV kategori
Forskningsprogram
Geodesi och geoinformatik
Identifikatorer
urn:nbn:se:kth:diva-183577 (URN)978-91-7595-879-8 (ISBN)
Disputas
2016-04-15, Sal L1, Drottning Kristinas väg 30, KTH, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Merknad

QC 20160317

Tilgjengelig fra: 2016-03-17 Laget: 2016-03-17 Sist oppdatert: 2016-03-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Abrehdary, MajidSjöberg, Lars E.Bagherbandi, Mohammad
Av organisasjonen
I samme tidsskrift
Acta Geodaetica et Geophysica Hungarica

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1172 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf