Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Decoding of human hand actions to handle missing limbs in neuroprosthetics
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsbiologi, CB. KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST). Imperial College London, United Kingdom; University of Belgrade, Serbia.
Imperial College London.
2015 (engelsk)Inngår i: Frontiers in Computational Neuroscience, ISSN 1662-5188, E-ISSN 1662-5188, Vol. 9, nr 27, s. 1-11Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The only way we can interact with the world is through movements, and our primary interactions are via the hands, thus any loss of hand function has immediate impact on our quality of life. However, to date it has not been systematically assessed how coordination in the hand's joints affects every day actions. This is important for two fundamental reasons. Firstly, to understand the representations and computations underlying motor control “in-the-wild” situations, and secondly to develop smarter controllers for prosthetic hands that have the same functionality as natural limbs. In this work we exploit the correlation structure of our hand and finger movements in daily-life. The novelty of our idea is that instead of averaging variability out, we take the view that the structure of variability may contain valuable information about the task being performed. We asked seven subjects to interact in 17 daily-life situations, and quantified behavior in a principled manner using CyberGlove body sensor networks that, after accurate calibration, track all major joints of the hand. Our key findings are: (1) We confirmed that hand control in daily-life tasks is very low-dimensional, with four to five dimensions being sufficient to explain 80–90% of the variability in the natural movement data. (2) We established a universally applicable measure of manipulative complexity that allowed us to measure and compare limb movements across tasks. We used Bayesian latent variable models to model the low-dimensional structure of finger joint angles in natural actions. (3) This allowed us to build a naïve classifier that within the first 1000 ms of action initiation (from a flat hand start configuration) predicted which of the 17 actions was going to be executed—enabling us to reliably predict the action intention from very short-time-scale initial data, further revealing the foreseeable nature of hand movements for control of neuroprosthetics and tele operation purposes. (4) Using the Expectation-Maximization algorithm on our latent variable model permitted us to reconstruct with high accuracy (<56° MAE) the movement trajectory of missing fingers by simply tracking the remaining fingers. Overall, our results suggest the hypothesis that specific hand actions are orchestrated by the brain in such a way that in the natural tasks of daily-life there is sufficient redundancy and predictability to be directly exploitable for neuroprosthetics.

sted, utgiver, år, opplag, sider
Frontiers Research Foundation , 2015. Vol. 9, nr 27, s. 1-11
Emneord [en]
neurotechnology, motor control, neuroprosthetics, movement variability, Bayesian classifier, activities of daily living, finger movement
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-168103DOI: 10.3389/fncom.2015.00027ISI: 000352462000002Scopus ID: 2-s2.0-84924156219OAI: oai:DiVA.org:kth-168103DiVA, id: diva2:814423
Merknad

QC 20160413

Tilgjengelig fra: 2015-05-27 Laget: 2015-05-27 Sist oppdatert: 2017-12-04bibliografisk kontrollert

Open Access i DiVA

fulltext(10374 kB)85 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 10374 kBChecksum SHA-512
1386258c05d8648f039cea676fb098d5d5e6eac54c949899a134e8b74285e35d42c9ddbcce22f39c157f7d03bfd4a3f31ae70ae048640d4fbb2521df7dcf1d22
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopushttp://journal.frontiersin.org/article/10.3389/fncom.2015.00027/full

Søk i DiVA

Av forfatter/redaktør
Belic, Jovana
Av organisasjonen
I samme tidsskrift
Frontiers in Computational Neuroscience

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 85 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 2148 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf