Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Decoding of human hand actions to handle missing limbs in neuroprosthetics
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsbiologi, CB. KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST). Imperial College London, United Kingdom; University of Belgrade, Serbia.
Imperial College London.
2015 (Engelska)Ingår i: Frontiers in Computational Neuroscience, ISSN 1662-5188, E-ISSN 1662-5188, Vol. 9, nr 27, s. 1-11Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The only way we can interact with the world is through movements, and our primary interactions are via the hands, thus any loss of hand function has immediate impact on our quality of life. However, to date it has not been systematically assessed how coordination in the hand's joints affects every day actions. This is important for two fundamental reasons. Firstly, to understand the representations and computations underlying motor control “in-the-wild” situations, and secondly to develop smarter controllers for prosthetic hands that have the same functionality as natural limbs. In this work we exploit the correlation structure of our hand and finger movements in daily-life. The novelty of our idea is that instead of averaging variability out, we take the view that the structure of variability may contain valuable information about the task being performed. We asked seven subjects to interact in 17 daily-life situations, and quantified behavior in a principled manner using CyberGlove body sensor networks that, after accurate calibration, track all major joints of the hand. Our key findings are: (1) We confirmed that hand control in daily-life tasks is very low-dimensional, with four to five dimensions being sufficient to explain 80–90% of the variability in the natural movement data. (2) We established a universally applicable measure of manipulative complexity that allowed us to measure and compare limb movements across tasks. We used Bayesian latent variable models to model the low-dimensional structure of finger joint angles in natural actions. (3) This allowed us to build a naïve classifier that within the first 1000 ms of action initiation (from a flat hand start configuration) predicted which of the 17 actions was going to be executed—enabling us to reliably predict the action intention from very short-time-scale initial data, further revealing the foreseeable nature of hand movements for control of neuroprosthetics and tele operation purposes. (4) Using the Expectation-Maximization algorithm on our latent variable model permitted us to reconstruct with high accuracy (<56° MAE) the movement trajectory of missing fingers by simply tracking the remaining fingers. Overall, our results suggest the hypothesis that specific hand actions are orchestrated by the brain in such a way that in the natural tasks of daily-life there is sufficient redundancy and predictability to be directly exploitable for neuroprosthetics.

Ort, förlag, år, upplaga, sidor
Frontiers Research Foundation , 2015. Vol. 9, nr 27, s. 1-11
Nyckelord [en]
neurotechnology, motor control, neuroprosthetics, movement variability, Bayesian classifier, activities of daily living, finger movement
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-168103DOI: 10.3389/fncom.2015.00027ISI: 000352462000002Scopus ID: 2-s2.0-84924156219OAI: oai:DiVA.org:kth-168103DiVA, id: diva2:814423
Anmärkning

QC 20160413

Tillgänglig från: 2015-05-27 Skapad: 2015-05-27 Senast uppdaterad: 2017-12-04Bibliografiskt granskad

Open Access i DiVA

fulltext(10374 kB)78 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 10374 kBChecksumma SHA-512
1386258c05d8648f039cea676fb098d5d5e6eac54c949899a134e8b74285e35d42c9ddbcce22f39c157f7d03bfd4a3f31ae70ae048640d4fbb2521df7dcf1d22
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopushttp://journal.frontiersin.org/article/10.3389/fncom.2015.00027/full

Sök vidare i DiVA

Av författaren/redaktören
Belic, Jovana
Av organisationen
Beräkningsbiologi, CBBeräkningsvetenskap och beräkningsteknik (CST)
I samma tidskrift
Frontiers in Computational Neuroscience
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 78 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 2071 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf