Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The path kernel: A novel kernel for sequential data
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.ORCID-id: 0000-0003-1114-6040
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.ORCID-id: 0000-0003-2965-2953
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
2015 (engelsk)Inngår i: Pattern Recognition: Applications and Methods : International Conference, ICPRAM 2013 Barcelona, Spain, February 15–18, 2013 Revised Selected Papers / [ed] Ana Fred, Maria De Marsico, Springer Berlin/Heidelberg, 2015, s. 71-84Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We define a novel kernel function for finite sequences of arbitrary length which we call the path kernel. We evaluate this kernel in a classification scenario using synthetic data sequences and show that our kernel can outperform state of the art sequential similarity measures. Furthermore, we find that, in our experiments, a clustering of data based on the path kernel results in much improved interpretability of such clusters compared to alternative approaches such as dynamic time warping or the global alignment kernel.

sted, utgiver, år, opplag, sider
Springer Berlin/Heidelberg, 2015. s. 71-84
Serie
Advances in Intelligent Systems and Computing, ISSN 2194-5357 ; 318
Emneord [en]
Kernels, Sequences, Pattern recognition, Dynamic time warping, Global alignment, Interpretability, Kernel function, Similarity measure, State of the art, Classification (of information)
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-167388DOI: 10.1007/978-3-319-12610-4_5ISI: 000364822300005Scopus ID: 2-s2.0-84914163004ISBN: 9783319126098 (tryckt)OAI: oai:DiVA.org:kth-167388DiVA, id: diva2:815584
Konferanse
2nd International Conference on Pattern Recognition Applications and Methods, ICPRAM 2013; Barcelona; Spain; 15 February 2013 through 18
Merknad

QC 20150601

Tilgjengelig fra: 2015-06-01 Laget: 2015-05-22 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Pokorny, Florian T.Kragic, Danica

Søk i DiVA

Av forfatter/redaktør
Baisero, AndreaPokorny, Florian T.Kragic, DanicaEk, Carl Henrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 477 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf