Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Task-Based Robot Grasp Planning Using Probabilistic Inference
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. (Computer Vision and Active Perception (CVAP) Lab)
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.ORCID-id: 0000-0003-2965-2953
2015 (engelsk)Inngår i: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 31, nr 3, s. 546-561Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Grasping and manipulating everyday objects in a goal-directed manner is an important ability of a service robot. The robot needs to reason about task requirements and ground these in the sensorimotor information. Grasping and interaction with objects are challenging in real-world scenarios, where sensorimotor uncertainty is prevalent. This paper presents a probabilistic framework for the representation and modeling of robot-grasping tasks. The framework consists of Gaussian mixture models for generic data discretization, and discrete Bayesian networks for encoding the probabilistic relations among various task-relevant variables, including object and action features as well as task constraints. We evaluate the framework using a grasp database generated in a simulated environment including a human and two robot hand models. The generative modeling approach allows the prediction of grasping tasks given uncertain sensory data, as well as object and grasp selection in a task-oriented manner. Furthermore, the graphical model framework provides insights into dependencies between variables and features relevant for object grasping.

sted, utgiver, år, opplag, sider
2015. Vol. 31, nr 3, s. 546-561
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-170982DOI: 10.1109/TRO.2015.2409912ISI: 000356518700003Scopus ID: 2-s2.0-84926395738OAI: oai:DiVA.org:kth-170982DiVA, id: diva2:841369
Merknad

QC 20150713

Tilgjengelig fra: 2015-07-13 Laget: 2015-07-13 Sist oppdatert: 2017-12-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Kragic, Danica

Søk i DiVA

Av forfatter/redaktør
Song, DanEk, Carl HenrikHübner, KaiKragic, Danica
Av organisasjonen
I samme tidsskrift
IEEE Transactions on robotics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 267 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf