Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mobile Node Localization via Pareto Optimization: Algorithm and Fundamental Performance Limitations
University of Perugia.
KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.ORCID-id: 0000-0001-9810-3478
2015 (Engelska)Ingår i: IEEE Journal on Selected Areas in Communications, ISSN 0733-8716, E-ISSN 1558-0008, Vol. 33, nr 7, s. 1288-1316Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Accurate estimation of the position of network nodes is essential, e.g., in localization, geographic routing, and vehicular networks. Unfortunately, typical positioning techniques based on ranging or on velocity and angular measurements are inherently limited. To overcome the limitations of specific positioning techniques, the fusion of multiple and heterogeneous sensor information is an appealing strategy. In this paper, we investigate the fundamental performance of linear fusion of multiple measurements of the position of mobile nodes, and propose a new distributed recursive position estimator. The Cramer-Rao lower bounds for the parametric and a-posteriori cases are investigated. The proposed estimator combines information coming from ranging, speed, and angular measurements, which is jointly fused by a Pareto optimization problem where the mean and the variance of the localization error are simultaneously minimized. A distinguished feature of the method is that it assumes a very simple dynamical model of the mobility and therefore it is applicable to a large number of scenarios providing good performance. The main challenge is the characterization of the statistical information needed to model the Fisher information matrix and the Pareto optimization problem. The proposed analysis is validated by Monte Carlo simulations, and the performance is compared to several Kalman-based filters, commonly employed for localization and sensor fusion. Simulation results show that the proposed estimator outperforms the traditional approaches that are based on the extended Kalman filter when no assumption on the model of motion is used. In such a scenario, better performance is achieved by the proposed method, but at the price of an increased computational complexity.

Ort, förlag, år, upplaga, sidor
2015. Vol. 33, nr 7, s. 1288-1316
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:kth:diva-171109DOI: 10.1109/JSAC.2015.2430151ISI: 000356701300002Scopus ID: 2-s2.0-84933574103OAI: oai:DiVA.org:kth-171109DiVA, id: diva2:842464
Anmärkning

QC 20150720

Tillgänglig från: 2015-07-20 Skapad: 2015-07-20 Senast uppdaterad: 2017-12-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Fischione, Carlo

Sök vidare i DiVA

Av författaren/redaktören
De Angelis, AlessioFischione, Carlo
Av organisationen
ACCESS Linnaeus Centre
I samma tidskrift
IEEE Journal on Selected Areas in Communications
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 89 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf