Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Toward Industrially Feasible Methods for Following the Process of Manufacturing Cellulose Nanofibers
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.ORCID iD: 0000-0002-2900-4713
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
2015 (English)In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 10, no 2, p. 2360-2375Article in journal (Refereed) Published
Abstract [en]

Nanocellulose is a recently developed form of cellulose that has the potential to be used in many different industries, ranging from food to high-performance applications. This material is commercially manufactured through the homogenization of chemical pulps, but the process is energy-consuming and is still an important subject for development. Simple, robust methods are required for the quality control and optimization of industrial nanocellulose production. In this study, a number of different methods, based on different principles of monitoring the manufacture of cellulose nanofibers were evaluated and compared for five different nanocellulose qualities, both for their resolution and robustness/ease. Methods based on microscopy, light scattering, centrifugation, and viscosity were examined and all appeared useful for observing the manufacturing process during its initial stage. However, only methods based on centrifugation, turbidity, and transmittance yielded reliable data for the entire manufacturing process. Of these methods, transmittance measurement may be the best candidate for routine use because the method is simple, rapid, and only requires spectrophotometer equipment.

Place, publisher, year, edition, pages
2015. Vol. 10, no 2, p. 2360-2375
Keywords [en]
Cellulose nanofibers, Microfibrillated cellulose, Nanofibrillated cellulose, Characterization, Transmittance, Turbidity
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:kth:diva-172271ISI: 000354642000034OAI: oai:DiVA.org:kth-172271DiVA, id: diva2:846975
Note

QC 20150818

Available from: 2015-08-18 Created: 2015-08-14 Last updated: 2018-12-21Bibliographically approved
In thesis
1. Manufacturing and Characterization of Cellulose Nanofibers
Open this publication in new window or tab >>Manufacturing and Characterization of Cellulose Nanofibers
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The usage of wood has been a dominant driving force during the evolution of the human species. It allowed us to cook food, build tools, put roofs over our head and explore the world. The fibers making up the tree has been the most important way to store and transmit knowledge in the form of paper for centuries. It may not be considered as the most interesting or hi-tech of fields, although, nothing could be further from the truth. One of society's most significant issue is how to live sustainably, which is coincidentally exactly what trees can solve. We can live in tall buildings made from wood, locking up vast amounts of carbon dioxide - we can replace many of the plastics we use today with sustainable alternative from the components making up the tree - we could even make clothes from our trees and stop being reliant on the untenable cotton production - only our imagination is holding us back from what can be made from trees.

Cellulose is the structural component in trees, the molecule arranges itself in a complex hierarchical structure that forms the wood-cells, or fibers. Breaking down this hierarchical structure down to its smallest structural units leaves us with tiny fibers, no longer than a few micrometers and with a width of merely four nanometers. These are cellulose nanofibers, and this work has aimed to understand how and what it takes to liberate these fine fibers from the larger fiber that they make up. Two main pathways exist to liberate the nanofibers, either chemically by introducing negatively charged groups on the surface of the cellulose, making the fibrils repel each other, or mechanically, simply by intense processing of the fibers. However, these processes are associated with certain flaws in that (i) vast amount of energy is required unless the fibers are pretreated, (ii) disintegration is performed in instruments that do not scale well, (iii) disintegration is carried out at a low concentration of fibers, typically below 5%. Additionally, what comes out of a process is difficult to characterize in terms of quality due to an inherent inhomogeneity and the small size of the nanofibers.

These issues in combination with a greater understanding of the processes are the foundation of this thesis.

Decreased energy consumption and scalability was explored via the steam explosion concept Nanopulp. In order to avoid issues associated with the low concentration, a method was developed for drying cellulose nanofibers to a paste without causing hornification using glycerol. A variety of cellulose nanofibers from different sources were prepared and characterization techniques were compared and expanded upon, including the development of a method for better describing the surface area of cellulose nanofibers. Finally, an environmentally friendly composite was made using cheap and available resources in combination with cellulose nanofibers.

Abstract [sv]

Användningen av träd har varit en viktig del under människans evolution. Dessa har tillåtit oss tillaga mat, tillverka verktyg, bygga hus och utforskavärlden. Fibrerna som ett träd är uppbyggt av har i form av papper varitdet viktigaste sättet att lagra och överföra kunnskap under århundranden. Detta fält betraktas ofta som ganska tråkigt och inte så hi-tech, vilket är långt ifrån sanningen. Ett av samhällets största problemen idag är hur manska leva på ett hållbart sätt, vilket är exakt vad vi kan lösa med hjälp avträd. Vi kan bygga höga byggnader av trä att bo i för att binda upp storamängder koldioxid. Vi kan ersätta många av de plaster vi idag användermed hållbara alternativ från de komponenter som utgör träd. Vi kan till och med göra kläder från våra träd för att sluta vara beroende av den ohållbara bomullsproduktionen - bara fantasin sätter gränser för vad som kan göras frånträd. Cellulosa är den huvudsakligen strukturella komponenten i trä, molekylen ordnar sig i en komplex hierarkisk struktur som bildar träcellerna eller fibrerna. Genom att bryta ner denna hierarkiska strukturen till dess minsta strukturella enhet, småfibrer, som bara är några mikrometer långa och meden bredd av ynka fyra nanometer. Dessa är cellulosa nanofibrer och syftetmed detta arbete har varit att förstå hur och vad som krävs för att frigöra dessa småfibrer från den större fiber som de utgör. Det finns principiellt två vägar att gå för att sönderdela en fiber till nanofibrer, antingen kemiskt genom introduktion av negativt laddade grupper på cellulosans yta, vilket gör att nanofibrerna stöter ifrån varandra, eller mekaniskt, genom intensivt mekanisk bearbetning av fibrerna. Dessa processer är emellertid förknippade med vissa brister i och med att (i) stor mängd energi krävs om inte fibrerna förbehandlas, (ii) delaminering utförs i instrument som inte skalar väl industriellt, (iii) delaminering utförs vid en låg koncentration av fibrer, typiskt under 5%. Dessutom är det svårt att karakterisera det som kommer ut med hänsyn till kvalité på grund av inhomogeniteten och den lilla storleken hos nanofibrerna. Dessa problem i kombination med en större förståelse av processerna är ämnet för denna avhandling. 

Förmindskad energikonsumption och uppskalning undersöktes genom ett ångexplosionskonceptet, Nanopulping. För att undvika problemen associerade med den låga koncentrationen utvecklades en metod för att torka cellulosa nanofibrer till en pasta utan att orsaka hornifiering med hjälp av glycerol. En mängd cellulosa nanofibrer med olika utgångsmaterial framställdes och karaktäriseringstekniker jämfördes och utvecklades, denna utveckling innefattade bland annat en metod för att bättre beskriva ytan av cellulosa nanofibrer. Slutligen tillverkades en miljövänlig komposit från billiga och tillgängliga resurser i kombination med cellulosa nanofibrer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2018. p. 70
Series
TRITA-CBH-FOU ; 2019:1
Keywords
Cellulose, Nanofibers, Characterization, Homogenization, Endoglucanase, TEMPO, Specific surface area, Atomic force microscopy, Cellulosa, Nanofibrer, Karakterisering, Homogenisering, Endoglukanas, TEMPO, Specifik ytarea, Atomkraftmikroskopi
National Category
Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-240581 (URN)978-91-7873-079-7 (ISBN)
Public defence
2019-01-25, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Knowledge Foundation
Note

QC 20181223

Available from: 2018-12-23 Created: 2018-12-20 Last updated: 2019-01-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Lindström, Mikael E.

Search in DiVA

By author/editor
Moser, CarlLindström, Mikael E.Henriksson, Gunnar
By organisation
Fibre and Polymer Technology
In the same journal
BioResources
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 297 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf