Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A novel numerical modeling approach to determine the temperature distribution in the cutting tool using conjugate heat transfer (CHT) analysis
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion, Maskin- och processteknologi.
University of Guelph, CANADA.
Mechanical Engineering, American University of Sharjah.
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion, Maskin- och processteknologi.ORCID-id: 0000-0002-5960-2159
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 80, nr 5, s. 1039-1047Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This study deals with the conjugate heat transfer problem of a single point cutting tool under turning operation dissipating heat in the tool material and streams of the surrounding air. In order to estimate the cutting temperature during the turning operation, the DEFORM-3D finite element package was utilized. A machining simulation material model for Ti6Al4V was utilized using a modified Johnson–Cook equation. The maximum cutting temperature value was obtained from the finite element model. The temperature was then used as a constant heat source on the tool tip, and the conjugate heat transfer (CHT) approach was used to develop a computational fluid dynamics (CFD) model. The CFD model utilized a 3D heat and fluid flow analysis using ANSYS ® CFX. A cutting insert with a constant heat source was exposed to the stream velocities of the dry air. The numerical equations governing the flow and thermal fields in the fluid domain and energy equation in the solid domain were solved in parallel by maintaining the continuity of temperature and heat flux at the solid–fluid interface. The presented conjugate heat transfer (CHT) approach provided a very useful understanding of the temperature profile development at the cutting tool that is still a complex challenge for the existing experimental and numerical techniques.

Ort, förlag, år, upplaga, sidor
Springer, 2015. Vol. 80, nr 5, s. 1039-1047
Nationell ämneskategori
Produktionsteknik, arbetsvetenskap och ergonomi
Forskningsämne
Industriell produktion
Identifikatorer
URN: urn:nbn:se:kth:diva-173586DOI: 10.1007/s00170-015-7086-2ISI: 000360700900026Scopus ID: 2-s2.0-84949999119OAI: oai:DiVA.org:kth-173586DiVA, id: diva2:853729
Anmärkning

QC 20150915

Tillgänglig från: 2015-09-14 Skapad: 2015-09-14 Senast uppdaterad: 2017-12-04Bibliografiskt granskad
Ingår i avhandling
1. Numerical and Experimental Investigations of the Machinability of Ti6AI4V: Energy Efficiency and Sustainable Cooling/ Lubrication Strategies
Öppna denna publikation i ny flik eller fönster >>Numerical and Experimental Investigations of the Machinability of Ti6AI4V: Energy Efficiency and Sustainable Cooling/ Lubrication Strategies
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Titanium alloys are widely utilized in the aerospace, biomedical,marine, petro-chemical and other demanding industries due to theirdurability, high fatigue resistance and ability to sustain elevateoperating temperature. As titanium alloys are difficult to machine, dueto which machining of these alloys ends up with higher environmentalburden. The industry is now embracing the sustainable philosophy inorder to reduce their carbon footprint. This means that the bestsustainable practices have to be used in machining of titanium alloys aswell as in an effort to reduce the carbon footprint and greenhouse gas(GHG) emissions.In this thesis, a better understanding towards the feasibility of shiftingfrom conventional (dry and flood) cooling techniques to the vegetableoil based minimum quantity cooling lubrication (MQCL) wasestablished. Machining performance of MQCL cooling strategies wasencouraging as in most cases the tool life was found close to floodstrategy or sometimes even better. The study revealed that theinfluence of the MQCL (Internal) application method on overallmachining performance was more evident at higher cutting speeds. Inaddition to the experimental machinability investigations, FiniteElement Modeling (FEM) and Computational Fluid Dynamic (CFD)Modeling was also employed to prediction of energy consumed inmachining and cutting temperature distribution on the cutting tool. Allnumerical results were found in close agreement to the experimentaldata. The contribution of the thesis should be of interest to those whowork in the areas of sustainable machining.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2015. s. xx, 136
Serie
TRITA-IIP, ISSN 1650-1888 ; 15:07
Nyckelord
Titanium alloys, Energy consumption, Wear mechanisms, Finite element analysis, computational fluid dynamic analysis
Nationell ämneskategori
Produktionsteknik, arbetsvetenskap och ergonomi
Forskningsämne
Industriell produktion
Identifikatorer
urn:nbn:se:kth:diva-173594 (URN)978-91-7595-702-9 (ISBN)
Disputation
2015-10-01, Brinellsal M311, Brinellvägen 68, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20150915

Tillgänglig från: 2015-09-15 Skapad: 2015-09-15 Senast uppdaterad: 2015-09-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Rashid, Amir

Sök vidare i DiVA

Av författaren/redaktören
Pervaiz, SalmanRashid, AmirNicolescu, Mihai
Av organisationen
Maskin- och processteknologi
I samma tidskrift
The International Journal of Advanced Manufacturing Technology
Produktionsteknik, arbetsvetenskap och ergonomi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 106 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf