Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Best bang for your buck: GPU nodes for GROMACS biomolecular simulations
KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Beräkningsbiofysik.ORCID-id: 0000-0003-0603-5514
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 36, nr 26, s. 1990-2008Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well-exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)-based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off-loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance-to-price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer-class GPUs this improvement equally reflects in the performance-to-price ratio. Although memory issues in consumer-class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost-efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well-balanced ratio of CPU and consumer-class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime.

Ort, förlag, år, upplaga, sidor
2015. Vol. 36, nr 26, s. 1990-2008
Nyckelord [en]
molecular dynamics, GPU, parallel computing, energy efficiency, benchmark, MD, hybrid parallelization
Nationell ämneskategori
Kemi
Identifikatorer
URN: urn:nbn:se:kth:diva-173956DOI: 10.1002/jcc.24030ISI: 000360807700007PubMedID: 26238484Scopus ID: 2-s2.0-84941180719OAI: oai:DiVA.org:kth-173956DiVA, id: diva2:859281
Anmärkning

QC 20151006

Tillgänglig från: 2015-10-06 Skapad: 2015-09-24 Senast uppdaterad: 2017-12-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Pall, Szilard

Sök vidare i DiVA

Av författaren/redaktören
Pall, Szilard
Av organisationen
Beräkningsbiofysik
I samma tidskrift
Journal of Computational Chemistry
Kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 306 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf