Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High dynamic stiffness mechanical structures with nanostructured composite coatings deposited by high power impulse magnetron sputtering
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion, Maskin- och processteknologi. Plasmatrix Materials AB, Sweden. (Machine and Process Technology)ORCID-id: 0000-0002-4677-7005
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion, Maskin- och processteknologi. Plasmatrix Materials AB, Sweden.
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion.
Vise andre og tillknytning
2016 (engelsk)Inngår i: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 98, s. 24-33Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Nanostructured Cu:CuCNx composite coatings with high static and dynamic stiffness were synthesized by means of plasma-enhanced chemical vapor deposition (PECVD) combined with high power impulse magnetron sputtering (HiPIMS). Scanning electron microscope (SEM) images and energy-dispersive X-ray spectroscopy (EDS) mapping from cross-sectioned samples reveals a multi-layered nanostructure enriched in Cu, C, N, and O in different ratios. Mechanical properties of the coatings were investigated by Vickers micro-indention and model tests. It was observed that copper inclusions as well as copper interlayers in the CNx matrix can increase mechanical damping by up to 160%. Mechanical properties such as hardness, elastic modulus and loss factor were significantly improved by increasing the discharge power of the sputtering process. Moreover the coatings loss modulus was evaluated on the basis of indentation creep measurements under room temperature. The coating with optimum properties exhibited loss modulus of 2.6 GPa. The composite with the highest damping loss modulus were applied on the clamping region of a milling machining tool to verify their effect in suppressing regenerative tool chatter. The high dynamic stiffness coatings were found to effectively improve the critical stability limit of a milling tool by at least 300%, suggesting a significant increase of the dynamic stiffness.

sted, utgiver, år, opplag, sider
Elsevier, 2016. Vol. 98, s. 24-33
HSV kategori
Forskningsprogram
Teknisk materialvetenskap; Industriell produktion; Hållfasthetslära; Kemi
Identifikatorer
URN: urn:nbn:se:kth:diva-176864DOI: 10.1016/j.carbon.2015.10.074ISI: 000367233000003Scopus ID: 2-s2.0-84955307996OAI: oai:DiVA.org:kth-176864DiVA, id: diva2:868437
Prosjekter
HiPPOCAMP
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, 608800
Merknad

QC 20160209

Tilgjengelig fra: 2015-11-10 Laget: 2015-11-10 Sist oppdatert: 2017-12-01bibliografisk kontrollert
Inngår i avhandling
1. High dynamic stiffness nano-structured composites for vibration control: A Study of applications in joint interfaces and machining systems
Åpne denne publikasjonen i ny fane eller vindu >>High dynamic stiffness nano-structured composites for vibration control: A Study of applications in joint interfaces and machining systems
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Vibration control requires high dynamic stiffness in mechanical structures for a reliable performance under extreme conditions. Dynamic stiffness composes the parameters of stiffness (K) and damping (η) that are usually in a trade-off relationship. This thesis study aims to break the trade-off relationship.

After identifying the underlying mechanism of damping in composite materials and joint interfaces, this thesis studies the deposition technique and physical characteristics of nano-structured HDS (high dynamic stiffness) composite thick-layer coatings. The HDS composite were created by enlarging the internal grain boundary surface area through reduced grain size in nano scale (≤ 40 nm). The deposition process utilizes a PECVD (Plasma Enhanced Chemical Vapour Deposition) method combined with the HiPIMS (High Power Impulse Magnetron Sputtering) technology. The HDS composite exhibited significantly higher surface hardness and higher elastic modulus compared to Poly(methyl methacrylate) (PMMA), yet similar damping property. The HDS composites successfully realized vibration control of cutting tools while applied in their clamping interfaces.

Compression preload at essential joint interfaces was found to play a major role in stability of cutting processes and a method was provided for characterizing joint interface properties directly on assembled structures. The detailed analysis of a build-up structure showed that the vibrational mode energy is shifted by varying the joint interface’s compression preload. In a build-up structure, the location shift of vibration mode’s strain energy affects the dynamic responses together with the stiffness and damping properties of joint interfaces.

The thesis demonstrates that it is possible to achieve high stiffness and high damping simultaneously in materials and structures. Analysis of the vibrational strain energy distribution was found essential for the success of vibration control.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2015. s. ix, 71
Serie
TRITA-IIP, ISSN 1650-1888
Emneord
Vibration control, High dynamic stiffness, Metal matrix composite, Nano structures, Plasma enhanced chemical vapour deposition (PECVD), High power impulse magnetron sputtering (HiPIMS), Adiabatic, Machining, Regenerative tool chatter
HSV kategori
Forskningsprogram
Industriell produktion
Identifikatorer
urn:nbn:se:kth:diva-176869 (URN)978-91-7595-740-1 (ISBN)
Disputas
2015-12-01, M311, Brinellvägen 68, KTH, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, 608800EU, FP7, Seventh Framework Programme, 260048VINNOVA, E!4329VINNOVA, HydroMod
Tilgjengelig fra: 2015-11-11 Laget: 2015-11-10 Sist oppdatert: 2015-11-11bibliografisk kontrollert

Open Access i DiVA

Carbon Nano Structure Composite(8334 kB)370 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 8334 kBChecksum SHA-512
1b2a70982a83a8862c599f9a4e3d7c3ba900b8c8a0e925b521ce891ae2d2d21ad4bc11f49403436ed0d62befc76a4915d7ac7abbbc1edb1e40b53d417666eb36
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopusSciencedirect

Personposter BETA

Fu, Qilin

Søk i DiVA

Av forfatter/redaktør
Fu, QilinRashid, Md Masud-UrNicolescu, Cornel-Mihai
Av organisasjonen
I samme tidsskrift
Carbon

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 370 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 359 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf