Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High dynamic stiffness mechanical structures with nanostructured composite coatings deposited by high power impulse magnetron sputtering
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion, Maskin- och processteknologi. Plasmatrix Materials AB, Sweden. (Machine and Process Technology)ORCID-id: 0000-0002-4677-7005
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion, Maskin- och processteknologi. Plasmatrix Materials AB, Sweden.
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 98, s. 24-33Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Nanostructured Cu:CuCNx composite coatings with high static and dynamic stiffness were synthesized by means of plasma-enhanced chemical vapor deposition (PECVD) combined with high power impulse magnetron sputtering (HiPIMS). Scanning electron microscope (SEM) images and energy-dispersive X-ray spectroscopy (EDS) mapping from cross-sectioned samples reveals a multi-layered nanostructure enriched in Cu, C, N, and O in different ratios. Mechanical properties of the coatings were investigated by Vickers micro-indention and model tests. It was observed that copper inclusions as well as copper interlayers in the CNx matrix can increase mechanical damping by up to 160%. Mechanical properties such as hardness, elastic modulus and loss factor were significantly improved by increasing the discharge power of the sputtering process. Moreover the coatings loss modulus was evaluated on the basis of indentation creep measurements under room temperature. The coating with optimum properties exhibited loss modulus of 2.6 GPa. The composite with the highest damping loss modulus were applied on the clamping region of a milling machining tool to verify their effect in suppressing regenerative tool chatter. The high dynamic stiffness coatings were found to effectively improve the critical stability limit of a milling tool by at least 300%, suggesting a significant increase of the dynamic stiffness.

Ort, förlag, år, upplaga, sidor
Elsevier, 2016. Vol. 98, s. 24-33
Nationell ämneskategori
Kompositmaterial och -teknik Produktionsteknik, arbetsvetenskap och ergonomi Teknisk mekanik Nanoteknik Annan fysik
Forskningsämne
Teknisk materialvetenskap; Industriell produktion; Hållfasthetslära; Kemi
Identifikatorer
URN: urn:nbn:se:kth:diva-176864DOI: 10.1016/j.carbon.2015.10.074ISI: 000367233000003Scopus ID: 2-s2.0-84955307996OAI: oai:DiVA.org:kth-176864DiVA, id: diva2:868437
Projekt
HiPPOCAMP
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, 608800
Anmärkning

QC 20160209

Tillgänglig från: 2015-11-10 Skapad: 2015-11-10 Senast uppdaterad: 2017-12-01Bibliografiskt granskad
Ingår i avhandling
1. High dynamic stiffness nano-structured composites for vibration control: A Study of applications in joint interfaces and machining systems
Öppna denna publikation i ny flik eller fönster >>High dynamic stiffness nano-structured composites for vibration control: A Study of applications in joint interfaces and machining systems
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Vibration control requires high dynamic stiffness in mechanical structures for a reliable performance under extreme conditions. Dynamic stiffness composes the parameters of stiffness (K) and damping (η) that are usually in a trade-off relationship. This thesis study aims to break the trade-off relationship.

After identifying the underlying mechanism of damping in composite materials and joint interfaces, this thesis studies the deposition technique and physical characteristics of nano-structured HDS (high dynamic stiffness) composite thick-layer coatings. The HDS composite were created by enlarging the internal grain boundary surface area through reduced grain size in nano scale (≤ 40 nm). The deposition process utilizes a PECVD (Plasma Enhanced Chemical Vapour Deposition) method combined with the HiPIMS (High Power Impulse Magnetron Sputtering) technology. The HDS composite exhibited significantly higher surface hardness and higher elastic modulus compared to Poly(methyl methacrylate) (PMMA), yet similar damping property. The HDS composites successfully realized vibration control of cutting tools while applied in their clamping interfaces.

Compression preload at essential joint interfaces was found to play a major role in stability of cutting processes and a method was provided for characterizing joint interface properties directly on assembled structures. The detailed analysis of a build-up structure showed that the vibrational mode energy is shifted by varying the joint interface’s compression preload. In a build-up structure, the location shift of vibration mode’s strain energy affects the dynamic responses together with the stiffness and damping properties of joint interfaces.

The thesis demonstrates that it is possible to achieve high stiffness and high damping simultaneously in materials and structures. Analysis of the vibrational strain energy distribution was found essential for the success of vibration control.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2015. s. ix, 71
Serie
TRITA-IIP, ISSN 1650-1888
Nyckelord
Vibration control, High dynamic stiffness, Metal matrix composite, Nano structures, Plasma enhanced chemical vapour deposition (PECVD), High power impulse magnetron sputtering (HiPIMS), Adiabatic, Machining, Regenerative tool chatter
Nationell ämneskategori
Nanoteknik Produktionsteknik, arbetsvetenskap och ergonomi Kompositmaterial och -teknik Fusion, plasma och rymdfysik Kemi Bearbetnings-, yt- och fogningsteknik Teknisk mekanik
Forskningsämne
Industriell produktion
Identifikatorer
urn:nbn:se:kth:diva-176869 (URN)978-91-7595-740-1 (ISBN)
Disputation
2015-12-01, M311, Brinellvägen 68, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, 608800EU, FP7, Sjunde ramprogrammet, 260048VINNOVA, E!4329VINNOVA, HydroMod
Tillgänglig från: 2015-11-11 Skapad: 2015-11-10 Senast uppdaterad: 2015-11-11Bibliografiskt granskad

Open Access i DiVA

Carbon Nano Structure Composite(8334 kB)331 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 8334 kBChecksumma SHA-512
1b2a70982a83a8862c599f9a4e3d7c3ba900b8c8a0e925b521ce891ae2d2d21ad4bc11f49403436ed0d62befc76a4915d7ac7abbbc1edb1e40b53d417666eb36
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopusSciencedirect

Personposter BETA

Fu, Qilin

Sök vidare i DiVA

Av författaren/redaktören
Fu, QilinRashid, Md Masud-UrNicolescu, Cornel-Mihai
Av organisationen
Maskin- och processteknologiIndustriell produktion
I samma tidskrift
Carbon
Kompositmaterial och -teknikProduktionsteknik, arbetsvetenskap och ergonomiTeknisk mekanikNanoteknikAnnan fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 331 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 340 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf