Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High dynamic stiffness nano-structured composites for vibration control: A Study of applications in joint interfaces and machining systems
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion, Maskin- och processteknologi. Plasmatrix Materials AB. (Manufacturing and Metrology Systems)ORCID-id: 0000-0002-4677-7005
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Vibration control requires high dynamic stiffness in mechanical structures for a reliable performance under extreme conditions. Dynamic stiffness composes the parameters of stiffness (K) and damping (η) that are usually in a trade-off relationship. This thesis study aims to break the trade-off relationship.

After identifying the underlying mechanism of damping in composite materials and joint interfaces, this thesis studies the deposition technique and physical characteristics of nano-structured HDS (high dynamic stiffness) composite thick-layer coatings. The HDS composite were created by enlarging the internal grain boundary surface area through reduced grain size in nano scale (≤ 40 nm). The deposition process utilizes a PECVD (Plasma Enhanced Chemical Vapour Deposition) method combined with the HiPIMS (High Power Impulse Magnetron Sputtering) technology. The HDS composite exhibited significantly higher surface hardness and higher elastic modulus compared to Poly(methyl methacrylate) (PMMA), yet similar damping property. The HDS composites successfully realized vibration control of cutting tools while applied in their clamping interfaces.

Compression preload at essential joint interfaces was found to play a major role in stability of cutting processes and a method was provided for characterizing joint interface properties directly on assembled structures. The detailed analysis of a build-up structure showed that the vibrational mode energy is shifted by varying the joint interface’s compression preload. In a build-up structure, the location shift of vibration mode’s strain energy affects the dynamic responses together with the stiffness and damping properties of joint interfaces.

The thesis demonstrates that it is possible to achieve high stiffness and high damping simultaneously in materials and structures. Analysis of the vibrational strain energy distribution was found essential for the success of vibration control.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2015. , s. ix, 71
Serie
TRITA-IIP, ISSN 1650-1888
Emneord [en]
Vibration control, High dynamic stiffness, Metal matrix composite, Nano structures, Plasma enhanced chemical vapour deposition (PECVD), High power impulse magnetron sputtering (HiPIMS), Adiabatic, Machining, Regenerative tool chatter
HSV kategori
Forskningsprogram
Industriell produktion
Identifikatorer
URN: urn:nbn:se:kth:diva-176869ISBN: 978-91-7595-740-1 (tryckt)OAI: oai:DiVA.org:kth-176869DiVA, id: diva2:868453
Disputas
2015-12-01, M311, Brinellvägen 68, KTH, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, 608800EU, FP7, Seventh Framework Programme, 260048VINNOVA, E!4329VINNOVA, HydroModTilgjengelig fra: 2015-11-11 Laget: 2015-11-10 Sist oppdatert: 2015-11-11bibliografisk kontrollert
Delarbeid
1. Improving machining performance against regenerative tool chatter through adaptive normal pressure at the tool clamping interface
Åpne denne publikasjonen i ny fane eller vindu >>Improving machining performance against regenerative tool chatter through adaptive normal pressure at the tool clamping interface
2013 (engelsk)Inngår i: Journal of Machine Engineering, ISSN 1895-7595, Vol. 13, nr 1, s. 93-105Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Chatter in machining process is one of the common failures of a production line. For a cantilever tool, such as a boring bar, the rule of thumb requires the overhang length of the tool to be less than 4 times the diameter. The reason is because longer overhang will induce severe tool vibration in the form of chatter during machining. When a longer overhang than 4 times diameter is necessary for performing special machining operations, damping methods are needed to suppress tool chatter. One of the methods is the constrained layer damping method. Materials, such viscoelastic material, are applied in the vibration node regions of the structure to absorb the concentrated vibration strain energy and transform the mechanical energy to heat. With a cantilever tool clamped in a tool holder, the clamping interface is usually the vibration node region. The friction in the joint interface with low normal pressure became another source of damping and can be used for tool chatter suppression in mechanical structures. Joint interfaces are well known to possess normal pressure dependent stiffness and damping. The normal pressure’s effect on the structures frequency response function had been observed by H. Åkesson [1] et al, and L.Mi [2] et al. However, the direct effect of the joint interface normal pressure on machining process stability hasn’t been investigated. In this paper, a cantilever tool with 6.5 overhang length to diameter ratio is investigated. The direct effect of the tool clamping interface’s normal pressure on the machining process stability is studied. Three different levels of clamping normal pressure are tested with an internal turning process. The machining results indicate another adaptable solution on shop floor for suppressing tool chatter.

sted, utgiver, år, opplag, sider
Poland: , 2013
Emneord
chatter, tool, internal turning, vibration, clamping, damping, interface
HSV kategori
Forskningsprogram
Järnvägsgruppen - Ljud och vibrationer; SRA - Produktion
Identifikatorer
urn:nbn:se:kth:diva-122424 (URN)
Prosjekter
POPJIMXPRES
Forskningsfinansiär
XPRES - Initiative for excellence in production researchEU, FP7, Seventh Framework Programme, FoF.NMP.2010-1
Merknad

QC 20130521

Tilgjengelig fra: 2013-05-21 Laget: 2013-05-21 Sist oppdatert: 2015-11-11bibliografisk kontrollert
2. Anti-vibration Engineering in Internal Turning Using a Carbon Nanocomposite Damping Coating Produced by PECVD Process
Åpne denne publikasjonen i ny fane eller vindu >>Anti-vibration Engineering in Internal Turning Using a Carbon Nanocomposite Damping Coating Produced by PECVD Process
2014 (engelsk)Inngår i: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 23, nr 2, s. 506-517Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Machining dynamic stability has been enhanced through a damping coating based on a novel carbon-based nanocomposite material. The coating was synthesized using a plasma enhanced chemical vapor deposition method, and deposited on to the round-shank boring bar used for internal turning and tested during machining. Comparisons between an uncoated and a coated boring bar were carried out at 0.25 mm and 0.5 mm depth of cut using a five times length to diameter ratio overhang, which are typical conditions known to generate detrimental mechanical vibrations. From sound pressure measurement it was found that the measured absolute sound level during process could be reduced by about 90% when using the tool coated with damping layer. Surface roughness measurements of the processed workpiece showed decreased Ra values from approximately 3-6 mu m to less than 2 mu m (and in 50% of the cases < 1 mu m) when comparing an uncoated standard tool with its coated counterpart. Moreover, it was found that the addition of an anti-vibration coating did not adversely affect other tool properties, such as rigidity and modularity.

sted, utgiver, år, opplag, sider
Springer-Verlag New York, 2014
Emneord
chatter, machining, vibration damping, coating, PECVD, HIPIMS, metal matrix composite, carbon nanocomposite
HSV kategori
Forskningsprogram
Järnvägsgruppen - Ljud och vibrationer; SRA - Produktion
Identifikatorer
urn:nbn:se:kth:diva-122425 (URN)10.1007/s11665-013-0781-y (DOI)000330594800019 ()2-s2.0-84893576587 (Scopus ID)
Prosjekter
Eurostars Nanocomfort E!4329, Vinnova
Forskningsfinansiär
Vinnova, E!4329XPRES - Initiative for excellence in production research
Merknad

QC 20140228. Updated from submitted to published.

Tilgjengelig fra: 2013-05-21 Laget: 2013-05-21 Sist oppdatert: 2017-12-06bibliografisk kontrollert
3. Joint interface characterization method using frequency response measurements on assembled structures only: theoretical development and experimental validation on a workholding fixture for machining
Åpne denne publikasjonen i ny fane eller vindu >>Joint interface characterization method using frequency response measurements on assembled structures only: theoretical development and experimental validation on a workholding fixture for machining
2015 (engelsk)Inngår i: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 77, nr 5-8, s. 1213-1228Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A computation model based on inverse receptance coupling method is presented in this paper aiming for obtaining the joint interface's stiffness and damping properties using frequency response functions measured on assembled structures only. In the model, it is emphasized that the joint stiffness and damping should be modeled with frequency dependency. The model's validity is checked both through finite element (FE) simulation and experimental analyses. In the FE simulation example, the computation model gives more accurate results with noise-free data. In the experimental example, where noise in the data is unavoidable, the computation model is explored further for its applicability in the real industrial environment. Results from applications of the computational model show that it is even capable of obtaining the joint interface stiffness and damping values over the structure's resonance frequency. A viable process of predicting behaviors of workpiece with receptance coupling method through identifying the joint interface properties is presented in the end of the paper. The applicability of this computation model and the factors that influence the accuracy of the model are discussed in the end of the paper.

Emneord
Joint interface, Joint stiffness, Joint damping, Frequency response functions, Receptance coupling method, Inverse receptance coupling method, Finite element method
HSV kategori
Forskningsprogram
Industriell produktion; Maskinkonstruktion
Identifikatorer
urn:nbn:se:kth:diva-163992 (URN)10.1007/s00170-014-6539-3 (DOI)000350120000036 ()2-s2.0-84925467019 (Scopus ID)
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, 260048
Merknad

QC 20150427

Tilgjengelig fra: 2015-04-27 Laget: 2015-04-13 Sist oppdatert: 2017-12-04bibliografisk kontrollert
4. Suppressing tool chatter with novel multi-layered nanostructures of carbon based composite coatings
Åpne denne publikasjonen i ny fane eller vindu >>Suppressing tool chatter with novel multi-layered nanostructures of carbon based composite coatings
Vise andre…
2015 (engelsk)Inngår i: Journal of Materials Processing Technology, ISSN 0924-0136, E-ISSN 1873-4774, Vol. 223, s. 292-298Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Multi-layered nanostructured Cu and Cu-CNx composites synthesized by plasma-enhanced chemical vapour deposition were applied in the clamping area of a milling tool to suppress regenerative tool chatter. Scanning electron microscopy analysis showed a multi-layered nanostructure with excellent conformality, i.e. coating is not only uniform on planar surfaces but also around corners of the substrate. Cu:CuCNx nanostructured multilayers with thicknesses of approximately 0.5:1.6 mu m were obtained. With a diameter of 20 mm, the milling tool performed slotting processes at an overhang length of 120 mm. Modal analysis showed that a coating, with a thickness of approximately 300 mu m, can add sufficient damping without losing stiffness of the tool, to increase the critical stability limit by 50% or 100% depending on cutting direction.

Emneord
Milling, Tool regenerative chatter, Metal matrix composites, Nano-structures, Internal friction damping, Plasma enhanced chemical vapour deposition (PECVD)
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-170666 (URN)10.1016/j.jmatprotec.2015.03.043 (DOI)000356106600031 ()2-s2.0-84929497633 (Scopus ID)
Forskningsfinansiär
EU, European Research Council, 260048, 608800
Merknad

QC 20150707

Tilgjengelig fra: 2015-07-07 Laget: 2015-07-03 Sist oppdatert: 2017-12-04bibliografisk kontrollert
5. Constraining the shear strain in viscoelastic materials and utlization of the “incompressible” properties for damping treatment in hybrid joint interface module to improve their effect for vibration control in machining
Åpne denne publikasjonen i ny fane eller vindu >>Constraining the shear strain in viscoelastic materials and utlization of the “incompressible” properties for damping treatment in hybrid joint interface module to improve their effect for vibration control in machining
2016 (engelsk)Inngår i: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 83, nr 5, s. 1079-1097Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A hybrid joint interface module (HJIM) was developed using viscoelastic materials’ (VEM) “incompressible” property. The HJIM composes VEM layers compressed by screws. Its static stiffness and damping had been characterized by inverse receptance method. The analysis result showed that its static stiffness increases by nearly 50 % with increasing compression preload without compromising its loss factor. A comparison study of HJIM with a viscoelastic material joint interface module (VJIM) revealed that the change of the screws mechanical contact conditions affected the HJIM’s stiffness. Compression preload by fastening the screws, however, did not significantly affect the damping property of the HJIM. On the contrary to shear pre-strain, compression preload did not affect the VEM’s properties shown by studying the VJIM case. A workpiece was studied while fixed on the HJIM. Varying compression preload affected the stiffness of HJIM and that resulted in increased shear strain in VEM for certain modes while decreased shear strain in VEM for other modes. The affected shear strain in VEM altered the vibrational strain energy distribution and changed the receptance amplitude of different modes. In addition to apply the VEM where it is significantly strained, the analysis revealed that constraining the shear strain in VEM resulted in reduced receptance amplitude for different modes. The changes of receptance will further affect the vibration conditions in machining.

Emneord
Machining; Vibration; Damping; Viscoelastic materials; Inverse receptance coupling; Hybrid joint interface module;
HSV kategori
Forskningsprogram
Industriell produktion
Identifikatorer
urn:nbn:se:kth:diva-176865 (URN)10.1007/s00170-015-7487-2 (DOI)000371324500035 ()2-s2.0-84959146038 (Scopus ID)
Prosjekter
PoPJIM
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, 260048
Merknad

QC 20160407

Tilgjengelig fra: 2015-11-10 Laget: 2015-11-10 Sist oppdatert: 2017-12-01bibliografisk kontrollert
6. High dynamic stiffness mechanical structures with nanostructured composite coatings deposited by high power impulse magnetron sputtering
Åpne denne publikasjonen i ny fane eller vindu >>High dynamic stiffness mechanical structures with nanostructured composite coatings deposited by high power impulse magnetron sputtering
Vise andre…
2016 (engelsk)Inngår i: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 98, s. 24-33Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Nanostructured Cu:CuCNx composite coatings with high static and dynamic stiffness were synthesized by means of plasma-enhanced chemical vapor deposition (PECVD) combined with high power impulse magnetron sputtering (HiPIMS). Scanning electron microscope (SEM) images and energy-dispersive X-ray spectroscopy (EDS) mapping from cross-sectioned samples reveals a multi-layered nanostructure enriched in Cu, C, N, and O in different ratios. Mechanical properties of the coatings were investigated by Vickers micro-indention and model tests. It was observed that copper inclusions as well as copper interlayers in the CNx matrix can increase mechanical damping by up to 160%. Mechanical properties such as hardness, elastic modulus and loss factor were significantly improved by increasing the discharge power of the sputtering process. Moreover the coatings loss modulus was evaluated on the basis of indentation creep measurements under room temperature. The coating with optimum properties exhibited loss modulus of 2.6 GPa. The composite with the highest damping loss modulus were applied on the clamping region of a milling machining tool to verify their effect in suppressing regenerative tool chatter. The high dynamic stiffness coatings were found to effectively improve the critical stability limit of a milling tool by at least 300%, suggesting a significant increase of the dynamic stiffness.

sted, utgiver, år, opplag, sider
Elsevier, 2016
HSV kategori
Forskningsprogram
Teknisk materialvetenskap; Industriell produktion; Hållfasthetslära; Kemi
Identifikatorer
urn:nbn:se:kth:diva-176864 (URN)10.1016/j.carbon.2015.10.074 (DOI)000367233000003 ()2-s2.0-84955307996 (Scopus ID)
Prosjekter
HiPPOCAMP
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, 608800
Merknad

QC 20160209

Tilgjengelig fra: 2015-11-10 Laget: 2015-11-10 Sist oppdatert: 2017-12-01bibliografisk kontrollert

Open Access i DiVA

Doctor Thesis Qilin Fu(3629 kB)409 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3629 kBChecksum SHA-512
3e5e9100799f5a9040f708d5c05a0e75dbae6ee1a238f3bfae13090abe9d4e84ba656b2f4b2bb94c0aee51dff3c7ecbb51841c01b862e27fa17a879094e081cc
Type fulltextMimetype application/pdf

Personposter BETA

Fu, Qilin

Søk i DiVA

Av forfatter/redaktør
Fu, Qilin
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 409 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 1290 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf