Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
ProRenaTa: Proactive and reactive tuning to scale a distributed storage system
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS. Université Catholique de Louvain, Belgium.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS. Universitat Politècnica de Catalunya, Spain.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS.
Vise andre og tillknytning
2015 (engelsk)Inngår i: Proceedings - 2015 IEEE/ACM 15th International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015, Institute of Electrical and Electronics Engineers (IEEE), 2015, s. 453-464Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Provisioning tasteful services in the Cloud that guarantees high quality of service with reduced hosting cost is challenging to achieve. There are two typical auto-scaling approaches: predictive and reactive. A prediction based controller leaves the system enough time to react to workload changes while a feedback based controller scales the system with better accuracy. In this paper, we show the limitations of using a proactive or reactive approach in isolation to scale a tasteful system and the overhead involved. To overcome the limitations, we implement an elasticity controller, ProRenaTa, which combines both reactive and proactive approaches to leverage on their respective advantages and also implements a data migration model to handle the scaling overhead. We show that the combination of reactive and proactive approaches outperforms the state of the art approaches. Our experiments with Wikipedia workload trace indicate that ProRenaTa guarantees a high level of SLA commitments while improving the overall resource utilization.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2015. s. 453-464
Serie
IEEE-ACM International Symposium on Cluster Cloud and Grid Computing, ISSN 2376-4414
Emneord [en]
Auto-scaling, Elasticity, Resource utilization, SLA, Workload prediction, Cluster computing, Controllers, Digital storage, Grid computing, Multiprocessing systems, Quality of service, Distributed storage system, Prediction-based, Pro-active approach, Resource utilizations, State-of-the-art approach, Workload predictions, Distributed computer systems
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-176116DOI: 10.1109/CCGrid.2015.26ISI: 000380493100046Scopus ID: 2-s2.0-84941206623ISBN: 978-1-4799-8006-2 (tryckt)OAI: oai:DiVA.org:kth-176116DiVA, id: diva2:874716
Konferanse
15th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015, Hilton Shenzhen Shekou Nanhai HotelShenzhen, China, 4 May 2015 through 7 May 2015
Merknad

QC 20151127

Tilgjengelig fra: 2015-11-27 Laget: 2015-11-02 Sist oppdatert: 2016-09-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Liu, YingRameshan, NavaneethVlassov, Vladimir
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 73 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf