Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning Human Priors for Task-Constrained Grasping
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.ORCID-id: 0000-0002-1031-9600
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.ORCID-id: 0000-0003-2965-2953
2015 (engelsk)Inngår i: COMPUTER VISION SYSTEMS (ICVS 2015), Springer Berlin/Heidelberg, 2015, s. 207-217Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

An autonomous agent using manmade objects must understand how task conditions the grasp placement. In this paper we formulate task based robotic grasping as a feature learning problem. Using a human demonstrator to provide examples of grasps associated with a specific task, we learn a representation, such that similarity in task is reflected by similarity in feature. The learned representation discards parts of the sensory input that is redundant for the task, allowing the agent to ground and reason about the relevant features for the task. Synthesized grasps for an observed task on previously unseen objects can then be filtered and ordered by matching to learned instances without the need of an analytically formulated metric. We show on a real robot how our approach is able to utilize the learned representation to synthesize and perform valid task specific grasps on novel objects.

sted, utgiver, år, opplag, sider
Springer Berlin/Heidelberg, 2015. s. 207-217
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 9163
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-177975DOI: 10.1007/978-3-319-20904-3_20ISI: 000364183300020Scopus ID: 2-s2.0-84949035044ISBN: 978-3-319-20904-3; 978-3-319-20903-6 (tryckt)OAI: oai:DiVA.org:kth-177975DiVA, id: diva2:876031
Konferanse
10th International Conference on Computer Vision Systems (ICVS), JUL 06-09, 2015, Copenhagen, DENMARK
Merknad

QC 20151202

Tilgjengelig fra: 2015-12-02 Laget: 2015-11-30 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Hjelm, MartinKragic, Danica

Søk i DiVA

Av forfatter/redaktør
Hjelm, MartinEk, Carl HenrikKragic, Danica
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 76 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf