Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using Reduced Catalysts for Oxidation Reactions: Mechanistic Studies of the “Periana-Catalytica” System for CH4 Oxidation
Vise andre og tillknytning
2013 (engelsk)Inngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 135, nr 39, s. 14644-14658Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Designing oxidation catalysts based on CH activation with reduced, low oxidation state species is a seeming dilemma given the proclivity for catalyst deactivation by overoxidation. This dilemma has been recognized in the Shilov system where reduced Pt-II is used to catalyze methane functionalization. Thus, it is generally accepted that key to replacing Pt-IV in that system with more practical oxidants is ensuring that the oxidant does not over-oxidize the reduced Pt-II species. The “Periana-Catalytica” system, which utilizes (bpym)-(PtCl2)-Cl-II in concentrated sulfuric acid solvent at 200 degrees C, is a highly stable catalyst for the selective, high yield oxy-functionalization of methane. In lieu of the over-oxidation dilemma, the high stability and observed rapid oxidation of (bpym)(PtCl2)-Cl-II to Pt-IV in the absence of methane would seem to contradict the originally proposed mechanism involving CH activation by a reduced Pt-II species. Mechanistic studies show that the originally proposed mechanism is incomplete and that while CH activation does proceed with Pt-II there is a solution to the over oxidation dilemma. Importantly, contrary to the accepted view to minimize Pt-II overoxidation, these studies also show that increasing that rate could increase the rate of catalysis and catalyst stability. The mechanistic basis for this counterintuitive prediction could help to guide the design of new catalysts for alkane oxidation that operate by CH activation.

sted, utgiver, år, opplag, sider
American Chemical Society (ACS), 2013. Vol. 135, nr 39, s. 14644-14658
HSV kategori
Forskningsprogram
Kemi
Identifikatorer
URN: urn:nbn:se:kth:diva-178422DOI: 10.1021/ja404895zISI: 000326300500035Scopus ID: 2-s2.0-84885114886OAI: oai:DiVA.org:kth-178422DiVA, id: diva2:877794
Merknad

QC 20151210

Tilgjengelig fra: 2015-12-07 Laget: 2015-12-07 Sist oppdatert: 2017-12-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Ahlquist, Mårten

Søk i DiVA

Av forfatter/redaktør
Ahlquist, Mårten
I samme tidsskrift
Journal of the American Chemical Society

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 36 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf